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Abstract

In this paper, we generalise a result from Section 2 of Brauch, Kézdy and Snevily’s paper, [BKS14],
where they first present the connection between bipartite graphs and when we can rotate the rows
of a matrix so that it becomes invertible. They present this idea as an algorithm for determining
whether a bipartite graph has a perfect matching by turning the problem into a question about
matrices, which, in turn, can be solved in polynomial time using Edmond’s Matroid Intersection
Algorithm. However, by defining the bipartite graph first, they only consider a small selection of
matrices with entries in C. In the following, we extend these ideas to work for any matrix and over
any field and we give an exact condition on when a matrix can be made invertible by rotating its
rows. We then introduce the notions of cluster, minimal clusters and cluster density derived from
the notion of the deficiency of a bipartite graph and use these to give an exact condition on when
n2 elements of a field can form an invertible n× n matrix.

1 Set-up

1.1 Notation

For n ∈ N and F a field, we let [n] := {1, 2, ..., n}, Zn := Z/nZ, Sn denote the set of permutations of
[n], F denote the algebraic closure of F and µn denotes the set of the nth roots of unity, generated by a
primitive nth root of unity ω.

When working with polynomials, x := (x1, ..., xn) and for a ∈ Fn, then x+a := (x1+a1, ..., xn+an).
Additionally, for α ∈ Nn

0 , then |α| =
∑n

i=1 αi and xα :=
∏n

i=1 x
αi
i . Finally, for a polynomial g ∈ F[x],

Z(g)[F] := {x ∈ F : g(x) = 0} is the set of roots of g from the algebraic closure of F.
We denote a graph G = (V (G), E(G)) = (V,E) where V (G) is the set of vertices and E(G) is the

set of edges and for a subset of the vertices W ⊆ V (G), NG(W ) ⊆ V (G) denotes the set of neighbours
of elements in W . If G is a bipartite graph, the vertices of G can be divided into two disjoint sets A

and B, denoted V (G) = (A,B), and we denote edges of G by (a, b) where a ∈ A and b ∈ B.

1.2 Vandermonde’s Matrix

Vandermonde’s identity, a formula for the determinant of the Vandermonde matrix, crops up as a useful
tool in a number of different areas of Combinatorics. As covered in Section 9.2 of [TV06], the determinant
of the Vandermonde matrix is used in proofs of Dyson’s conjecture and Snevily’s Conjecture.

Definition 1.1 (Vandermonde matrix). For each n ∈ N, let Vn ∈ Mn(F[x1, ..., xn]) be the Vandermonde
matrix, with elements (Vn)i j = xj−1

i for all i, j ∈ [n].
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Lemma 1.2 (Vandermonde’s identity). If Vn ∈ Mn(F[x1, ..., xn]) is the Vandermonde matrix, then

detVn(x) =
∏

1≤i<j≤n

(xj − xi)

1.3 Combinatorial Nullstellensatz

The following is an incredibly useful result, commonly known as the Combinatorial Nullstellensatz,
given as Theorem 1.1 in [Alo99].

Theorem 1.3. Given an arbitrary field F, let f ∈ F[x1, ..., xn]. Let S1, ..., Sn be non-empty subsets of F
and, for i ∈ [n], define gi(xi) :=

∏
a∈Si

(xi − a) ∈ F[xi]. If f(s) = 0 for all s ∈ S1 × ...× Sn, then there
exist polynomials h1, h2, ..., hn ∈ F[x1, ..., xn], where, for all i ∈ [n], deg(hi) ≤ deg(f)− |Si| such that
f =

∑
i∈[n] higi.

Later on we will need the following almost identical result to Theorem 1.3, which follows easily as a
Corollary from it.

Corollary 1.4. Given an arbitrary field F, let f ∈ F[x1, ..., xn]. Let S1, ..., Sn be non-empty subsets of
F and, for i ∈ [n], define gi(xi) :=

∏
a∈Si

(xi − a) ∈ F[xi]. Then, f(s) = 0 for all s ∈ S1 × ... × Sn if
and only if f ∈ ⟨gi(xi) : i ∈ [n]⟩.

2 When can a matrix be unlocked...

Our original motivation is to look at the matrices given by rotating the rows of a given starting matrix
and decide whether any of them are invertible. Since rotating the rows of a matrix is a group action on
the matrix, it makes sense to generalise this immediately.

Definition 2.1. Let the symmetric group Sn2 act on the n2 elements of a matrix M ∈ Mn(F) by
permutation. Then, M is unlocked by a set S ⊆ Sn2 if we can apply a sequence of group elements from
S to M after which M is invertible ie. M is unlocked by S if ∃σ ∈ ⟨S⟩ ⊆ Sn2 such that det(σ(M)) ̸= 0.

2.1 ...by rotations of its rows?

We can now restrict ourselves to cyclically permuting (or rotating) the rows of a matrix M ∈ Mn(F).

Notation 2.2. For α ∈ Zn
n, let M [α] be the matrix defined by (M [α])i j := M(i modn) (j+αi modn) ie.

the matrix where we rotate the ith row to the left by αi positions. Letting ei denote the standard
ith basis vector, if we let ri(M) := M [ei] then ri ∈ Sn2 and for R := {ri : i ∈ [n]} ⊆ Sn2, then
⟨R⟩ = {

∏n
i=1 r

αi
i : α ∈ Zn

n} ⊆ Sn2 since all ri commute.
In the language of Definition 2.1, we say M is unlocked by R or just M can be unlocked by rotations

of its rows if and only if ∃σ ∈ ⟨R⟩ such that det(σ(M)) ̸= 0. This is equivalent to the existence of
α ∈ Zn

n such that det(M [α]) ̸= 0.

Example 2.3. The matrix π =

3 −1 −4

1 5 −9

2 −6 5

 ∈ M3(Q) can be unlocked by row rotations as even though

det(π) = 0, r3(π) = π[e3] =

 3 −1 −4

1 5 −9

−6 5 2

 has determinant −27. γ =

 2 −7 5

−3 −8 11

2 0 −2

 ∈ M3(Q),
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however, can not be unlocked by row rotations ie. det(σ(γ)) = 0 for all σ ∈ ⟨R⟩. This is simply due to
the fact that the digits in each row of γ add up to 0. An easy way to see that this is the case is that
(1, 1, 1) is an eigenvector of σ(γ) with eigenvalue 0 for all σ ∈ ⟨R⟩. Since the determinant of a matrix is
equal to the product of its eigenvalues then det(σ(γ)) = 0 for all σ ∈ ⟨R⟩. But, as we will see, the rows
of a matrix all adding up to 0 is not a necessary condition for a matrix not to be able to be unlocked by
row rotations.

Definition 2.4. [BKS14] Given a matrix M ∈ Mn(F), for i ∈ [n], define gi ∈ F[xi] by

gi(xi) :=

n∑
j=1

Mi jx
j−1
i .

Letting Vn be the n× n Vandermonde matrix as in Definition 1.1, define fM ∈ F[x1, ..., xn] as

fM (x) := (detVn)(x)
n∏

k=1

gk(xk) =
∏

1≤i<j≤n

(xj − xi)
n∏

k=1

gk(xk)

While the definition of our key polynomial fM may look fairly arbitrary, its key features are that it
contains all the information about our matrix M , both its elements and their positions, and also that it
vanishes on any input x = (x1, ..., xn) where xi = xj for some i ̸= j.

We now prove a technical lemma.

Lemma 2.5. For permutations σ, β ∈ Sn, if σ(i) + β(i) ≡ k (modn) for all i ∈ [n], then sgn(σ) =

(−1)(n−1)k+⌊n−1
2

⌋ sgn(β).

Proof. For permutations τ, β ∈ Sn, we can restate the condition that τ(i) + β(i) ≡ 0 (modn) for all
i ∈ [n] in terms of permutations by adding in transpositions as such

τ = (1, n− 1)(2, n− 2)...(⌊n− 1

2
⌋, n− ⌊n− 1

2
⌋)β =

⌊n−1
2

⌋∏
j=1

(j, n− j)

β

We need ⌊n−1
2 ⌋ transpositions since for n odd, every element except n gets swapped ie. n−1

2 = ⌊n−1
2 ⌋

swaps whereas for n even, every element except n and n
2 gets swapped ie. n−2

2 = ⌊n−1
2 ⌋ swaps.

Finally, setting σ = (1, ..., n)kτ implies σ(i) ≡ τ(i) + k (modn) so σ(i) + β(i) ≡ k (modn) for all
i ∈ [n]. Thus,

sgn(σ) = sgn

(1, ..., n)k
⌊n−1

2
⌋∏

j=1

(j, n− j)β

 = sgn(1, ..., n)k
⌊n−1

2
⌋∏

j=1

sgn(j, n− j) sgn(β)

= (−1)(n−1)k+⌊n−1
2

⌋ sgn(β)

since sgn((1, ..., n)) = (−1)n−1.

The following Lemma is part of Theorem 2 from [BKS14], however, the factor of (−1)⌊
n−1
2

⌋ is missed
in the original paper which we amend here.

Lemma 2.6. [BKS14] Given a matrix M ∈ Mn(F), then

fM (x) ≡ (−1)⌊
n−1
2

⌋
∑
α∈Zn

n

det(M [α])xα mod⟨xni − 1 : i ∈ [n]⟩
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Proof. Working modulo the ideal ⟨xni − 1 : i ∈ [n]⟩, we notice that

x−α
n∏

i=1

gi(xi) =
n∏

i=1

x−αi
i gi(xi) =

n∏
i=1

n∑
j=1

Mi jx
j−1−αi
i =

n∏
i=1

n−αi∑
j=1−αi

(M)i j+αix
j−1
i

=
n∏

i=1

n−αi∑
j=1−αi

(M [α])i j (modn)x
j−1
i ≡

n∏
i=1

n∑
j=1

(M [α])i jx
j−1
i =

∑
β∈Zn

n

n∏
i=1

xβi−1
i (M [α])i βi

and using the Leibniz determinant formula

(detVn)(x) =
∑
σ∈Sn

sgn(σ)
n∏

k=1

(Vn)k σ(k) =
∑
σ∈Sn

sgn(σ)
n∏

k=1

x
σ(k)−1
k

so

x−αfM (x) ≡

(∑
σ∈Sn

sgn(σ)
n∏

k=1

x
σ(k)−1
k

)∑
β∈Zn

n

n∏
i=1

xβi−1
i (M [α])i βi

 (1)

By comparing coefficients, we can see it is enough to show that, for any α ∈ Zn
n, the constant term of

x−αfM (x) modulo the ideal ⟨xni −1 : i ∈ [n]⟩ is equivalent to (−1)⌊
n−1
2

⌋ det(M [α]). Looking at Equation
1, the constant term of x−αfM (x) is given by the sum of sgn(σ)

∏n
i=1(M [α])i βi

for σ ∈ Sn, β ∈ Zn
n

where σ(k)− 1 ≡ −βk − 1 (modn), equivalently σ(k) ≡ −βk (modn) for all k ∈ [n]. The only β ∈ Zn
n

that fulfil this are permutations of Sn since βk ≡ −σ(k) (modn) are distinct for all k ∈ [n] since σ ∈ Sn.
Using Lemma 2.5 with k = 0, the constant term of x−αfM (x) is thus∑

σ∈Sn
β∈Zn

n
σ(k)≡−βk

sgn(σ)
n∏

i=1

(M [α])i βi
=

∑
σ,β∈Sn

σ(i)+β(i)≡0

sgn(σ)
n∏

i=1

(M [α])i β(i)

= (−1)⌊
n−1
2

⌋
∑
β∈Sn

sgn(β)
n∏

i=1

(M [α])i β(i) = (−1)⌊
n−1
2

⌋ det(M [α]).

Corollary 2.7. Given a matrix M ∈ Mn(F), then M is not unlocked by row rotations if and only if
fM (x) ∈ ⟨xni − 1 : i ∈ [n]⟩.

Remark 2.8. Given a matrix M which can be unlocked by row rotations, Theorem 2.6 actually implies
that calculating the polynomial expansion of fM (x)mod⟨xni − 1 : i ∈ [n]⟩ automatically tells us which
group elements in ⟨R⟩ ⊆ Sn2 it is possible to unlock the matrix for. Simply find those α ∈ Zn

n with
non-zero coefficients in fM (x)mod⟨xni − 1 : i ∈ [n]⟩ and then

∏n
i=1 r

αi
i unlocks the matrix.

We now have to consider two cases which depend on whether the character of our field F divides
the size of our matrix n. These cases must be considered separately due to the differing number of nth
roots of unity in F in each case.

Case 1: We now study matrices M ∈ Mn(F) where char(F)|n.
When char(F)|n, we have µn = {1} as (x − 1)n =

∑n
i=0

(
n
i

)
(−1)ixn−i = xn − 1 since n|

(
n
i

)
for

1 ≤ i ≤ n− 1 and char(F)|n. Following Bruen in [Bru92], we define the multiplicity of an element in a
polynomial over any field.

Definition 2.9. For non-zero polynomial g ∈ F[x1, ..., xn], then g(x) has multiplicity t at a ∈ Fn if

t = min{|α| : α ∈ Nn
0 , cα ̸= 0} where g(x+ a) =

∑
α∈Nn

0

cαx
α

For convenience, if g(x) = 0, we say g(x) has multiplicity ∞ for all a ∈ Fn.
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With Bruen’s notion of multiplicity for multi-variable polynomials in hand, using Corollary 2.7,
we can now prove an exact condition on when a matrix is unlocked by row rotations in the case that
char(F)|n.

Theorem 2.10. Let M ∈ Mn(F) be a matrix where char(F)|n with corresponding polynomials gi(xi)

for i ∈ [n]. Define the sequence (ni)i∈[n], where gi(xi) has multiplicity ni at 1. Then, M is unlocked by
row rotations if and only if there is a permutation σ ∈ Sn such that ni < σ(i) for all i ∈ [n].

Proof. We start by proving ∀σ ∈ Sn, ∃ i ∈ [n] such that ni ≥ σ(i) ⇔ fM (x+ 1n) ∈ ⟨xni : i ∈ [n]⟩ where
1n := (1, ..., 1). For the ⇒ direction, using the properties of the determinant of the Vandermonde matrix
Vn from Lemma 1.2, we have

(detVn)(x+ 1n) =
∏

1≤i<j≤n

(xj + 1− xi − 1) =
∏

1≤i<j≤n

(xj − xi) = (detVn)(x)

Also, from the definition of the ni as multiplicities of the gi, we have gi(xi + 1) = hi(xi)x
ni
i for some

hi ∈ F[xi] where the hi have a non-zero constant term. Thus, using the Leibniz determinant formula,
we have

fM (x+ 1n) = (detVn)(x+ 1n)

n∏
i=1

gi(xi + 1) = (detVn)(x)

n∏
i=1

hi(xi)x
ni
i

=

(∑
τ∈Sn

sgn(τ)
n∏

i=1

x
τ(i)−1
i

)
n∏

i=1

hi(xi)x
ni
i =

∑
τ∈Sn

sgn(τ)
n∏

i=1

x
ni−1+τ(i)
i hi(xi)

= (−1)n−1+⌊n−1
2

⌋
n∏

i=1

hi(xi)

(∑
σ∈Sn

sgn(σ)

n∏
i=1

x
n+ni−σ(i)
i

)

where σ ∈ Sn is defined by σ(i) = (n + 1) − τ(i) for all i ∈ [n] and where we use Lemma 2.5 with
k = 1 for the (−1)n−1+⌊n−1

2
⌋. It is now clear that if ∀σ ∈ Sn, ∃ i ∈ [n] such that ni ≥ σ(i) then

fM (x+ 1n) ∈ ⟨xni : i ∈ [n]⟩.
To prove the ⇐ direction, we define a process. For some Q ⊆ Sn, define

f (Q)(x) = (−1)n−1+⌊n−1
2

⌋
n∏

i=1

hi(xi)

 ∑
σ∈Sn\Q

sgn(σ)

n∏
i=1

x
n+ni−σ(i)
i


and assume f (Q)(x) ∈ ⟨xni : i ∈ [n]⟩. Now let d = min{

∑
i∈[n] n + ni − σ(i) : σ ∈ Sn\Q} and

Q′ = {σ ∈ Sn\Q :
∑

i∈[n] n+ ni − σ(i) = d}. Then since the hi all have a non-zero constant term, the

sum of monomials of f (Q)(x) with degree d is given by a multiple of
∑

σ∈Q′ sgn(σ)
∏n

i=1 x
n+ni−σ(i)
i . Since

Q′ is non-empty this sum is non-zero and thus f (Q)(x) ∈ ⟨xni : i ∈ [n]⟩ implies ∀σ ∈ Q′, ∃ i ∈ [n] such
that ni ≥ σ(i). In addition, f (Q)(x) ∈ ⟨xni : i ∈ [n]⟩ ⇒ f (Q∪Q′)(x) ∈ ⟨xni : i ∈ [n]⟩ where |Q ∪Q′| > |Q|
and thus we can set Q = Q ∪Q′ and repeat the process.

We kick off the first iteration of this process by setting Q = ∅. Then since the size of Q strictly
increases with each iteration, Sn is finite and fM (x+ 1n) = f (∅)(x) ∈ ⟨xni : i ∈ [n]⟩, we prove ∀σ ∈ Sn,
∃ i ∈ [n] such that ni ≥ σ(i).

Forming a chain of equalities, ∀σ ∈ Sn, ∃ i ∈ [n] such that ni ≥ σ(i) ⇔ fM (x+ 1n) ∈ ⟨xni : i ∈ [n]⟩
⇔ fM (x) ∈ ⟨(xi − 1)n : i ∈ [n]⟩ = ⟨xni − 1 : i ∈ [n]⟩ ⇔ M is not unlocked by row rotations by Corollary
2.7.
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Example 2.11.

−1 1 0

−1 0 1

0 −1 1

 ∈ M3(F3) can not be unlocked by row rotations, since each row adds

up to 0 and thus any polynomial with coefficients given by elements in a row will have 1 as a root so
ni ≥ 1 for all i ∈ [n]. Then, for any σ ∈ Sn, taking σ(i) = 1 then ni ̸< σ(i) = 1 so by Theorem 2.10,
the matrix can not be unlocked. Thus, it is easy to see that, in general, the rows adding up to 0 is a
sufficient condition for a matrix to not be unlocked by row rotations. However, it is not a necessary

condition. Take


1 2 0 −1 0

1 −1 2 0 −2

2 1 −1 −2 −2

2 −1 0 1 −2

1 0 −1 −2 2

 ∈ M5(F5), which cannot be unlocked by row rotations since

the multiplicities at 1 are (0, 3, 0, 3, 3) but rows 1 and 3 don’t add up to 0.

Case 2: We now study matrices M ∈ Mn(F) where char(F) ∤ n.

Lemma 2.12. For n ∈ N, let F be a field where char(F) ∤ n. Then, tn − 1 =
∏

τ∈µn
(t− τ).

Proof. Consider the roots of xn − 1 in F. Seeking a contradiction, assume |µn| < n. Then ∃α ∈ µn

such that xn − 1 = (x − α)2g(x). Taking the formal derivative on both sides, D((x − α)2g(x)) =

(x−α)2D(g(x)) + 2(x−α)g(x) = D(xn − 1) = nxn−1 = and plugging in α, we get 0 = nαn−1 = n
α ̸= 0

which is a contradiction.

Lemma 2.13. For n ∈ N, let F be a field where char(F) ∤ n. Then, given f ∈ F[x1, ..., xn], f ∈ ⟨xni − 1 :

i ∈ [n]⟩ if and only if µn
n ⊆ Z(f)[F] ie. f(x) = 0 for all x ∈ µn

n.

Proof. This follows by Corollary 1.4 using gi(xi) = xni − 1 which factorises as gi(xi) =
∏

ω∈µn
(xi − ω)

by Lemma 2.12.

Definition 2.14. Given a matrix M ∈ Mn(F), where char(F) ∤ n, with corresponding polynomials gi(xi),
define the bipartite graph GM with vertices V (GM ) = ([n], µn) and edges given by (i, ωj) ∈ E(GM ) if
and only if ωj /∈ Z(gi)[F] for all i, j ∈ [n], where ω is a generator of µn.

The following lemma is a generalisation of part of Theorem 2 from [BKS14] to any matrix over any
field where char(F) ∤ n.

Lemma 2.15. Given a matrix M ∈ Mn(F) with corresponding polynomial fM (x) and graph GM , there
exists a perfect matching on GM if and only if µn

n ̸⊆ Z(fM )[F] ie. fM (x) ̸= 0 for some x ∈ µn
n.

Proof. Let ω be a generator of µn. For the ⇒ direction, let the perfect matching be given by
(i, ωσ(i)) ∈ E(GM ) for some σ ∈ Sn. Then by the definition of GM , Definition 2.14, ωσ(i) ̸∈ Z(gi)[F]
for all i ∈ [n]. Thus since σ is a permutation and using Lemma 1.2, then detVn(ω

σ(1), ..., ωσ(n)) ̸= 0,
thus fM (ωσ(1), ..., ωσ(n)) ̸= 0. For the ⇐ direction, assume fM (x) ̸= 0 for some x ∈ µn

n, then since
(detVn)(x) ̸= 0, again using Lemma 1.2, then x = (ωσ(1), ..., ωσ(n)) for some σ ∈ Sn a permutation.
Thus, for all i ∈ [n], ωσ(i) ̸∈ Z(gi)[F] ⇔ (i, ωσ(i)) ∈ E(GM ) and since σ is a permutation, this is a
perfect matching on GM .

The equivalent of Theorem 2.10 for the case char(F) ∤ n now falls out.

Theorem 2.16. Given a matrix M ∈ Mn(F) where char(F) ∤ n with corresponding graph GM , then M

is unlocked by row rotations ⇔ there exists a perfect matching on GM .
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Proof. By Corollary 2.7, Lemma 2.13 and Lemma 2.15, M is unlocked by row rotations ⇔ fM ̸∈
⟨xni − 1 : i ∈ [n]⟩ ⇔ µn

n ̸⊆ Z(fM )[F] ⇔ there exists a perfect matching on GM .

Example 2.17. We can now see another reason why the matrix γ =

 2 −7 5

−3 −8 11

2 0 −2

 ∈ M3(R) from

Example 2.3, or indeed any matrix where the rows add up to 0 can not be unlocked by row rotations. We
can construct a polynomial with coefficients given by a row of the matrix; if the coefficients add up to
0, then the polynomial has a root at 1. If this is the case for every row, then when we construct our
bipartite graph GM , (i, 1) ̸∈ E(G) for any i ∈ [n]. Thus, by the pigeonhole principle, it is impossible for
GM to have a perfect matching, otherwise there would have to be an edge connected to 1 ∈ µn.

For a more complicated example, let F = F3, and take µ =


0 1 0 1

−1 −1 −1 −1

−1 1 0 −1

1 −1 1 −1

 ∈ M4(F3). You

would have to calculate at most 4! = 24 determinants to find out if µ can be unlocked by rotations,
however, luckily for us we have some theorems we can use.

Instead of taking the full closure of F3, it is enough to let θ2 + 1 = 0 and work in F9 = F3[θ] since
F9 contains Ω4 as F×

9
∼= Z8. Then notice that polynomials g1(x1) = x31 + x1, g2(x2) = −x32 − x22 − x2 − 1

and g4(x4) = −x34 + x24 − x4 + 1 all have θ and −θ as roots. Thus Gµ, as depicted in Figure 1, does not
have a perfect matching since only 3 is connected to θ and −θ and thus by Theorem 2.16, µ can not be
unlocked by row rotations.

µ4

[4] 1 2 3 4

1 θ −1 −θ

Figure 1: The bipartite graph Gµ corresponding to matrix µ from Example 2.17.

Remark 2.18. It seems that whether char(F) divides n or not gives rather different conditions on
when the matrix can be unlocked by row rotations. However, these two cases are not so dissimilar
if we reformulate the case char(F)|n. The constraint given in Theorem 2.10 was that M ∈ Mn(F)
was unlocked by row rotations if and only if there was a permutation σ ∈ Sn such that ni < σ(i) for
i ∈ [n] where (ni)i∈[n] was given by gi(xi) having multiplicity ni at 1. Similarly to Definition 2.14,
where we defined GM , we can define a graph HM with vertices given by V (HM ) = ([n], [n]) and edges
(i, j) ∈ E(HM ) if and only if ni < j for all i, j ∈ [n]. Clearly ∃σ ∈ Sn such that ni < σ(i) for all i ∈ [n]

⇔ (i, σ(i)) ∈ E(HM ) ⇔ HM has a perfect matching since σ is a permutation. In some sense, we see
that Theorem 2.10 (the char(F)|n case) is not as strong a statement as Theorem 2.16 (the char(F) ∤ n
case), since we can construct matrices M such that GM is any bipartite graph whereas this is not true
for HM , since for any edge (i, j) ∈ E(HM ), we automatically have (i, j′) ∈ E(HM ) for all j′ ≥ j. This
will result in a more difficult proof of the more general versions of Theorem 2.10 and Theorem 2.16,
where we want to prove the forms of matrices which are unlocked by the set of all permutations.
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2.2 ...by all permutations?

We now have an exact condition on when a matrix is unlocked by row rotations. But what happens if
we allow ourselves to rotate both the rows and columns as we please in any order? What if we allow
any permutation of the elements of the matrix? It turns out that the latter question will help us answer
the former, so we tackle that first.

We will first give an exact condition on when a matrix is unlocked by all permutations for the easier
char(F)|n case, as a warm-up for the trickier char(F) ∤ n case.

Theorem 2.19. For n ≥ 2, given n2 elements in a field F with char(F)|n, where there are at most
n2 − n+ 1 of the same element or at most n2 − n zeroes, we can always construct an invertible n× n

matrix out of those elements.

Before we prove Theorem 2.19, we must first prove some technical lemmas.

Lemma 2.20. For n ≥ 1, given a polynomial p ∈ F[t] with degree at most n − 1, Z(p)[F] ∩ µn is
invariant under cyclic permutations (rotations) of the coefficients of p(t).

Proof. The statement of this Lemma is equivalent to ω ∈ Z(p(t))[F] ⇔ ω ∈ Z(tkp(t)mod ⟨tn − 1⟩)[F] for
all k ∈ [n], ω ∈ µn. Writing, tkp(t)mod ⟨tn − 1⟩as tkp(t) + (tn − 1)q(t) for some q ∈ F[t], and evaluating
at ω, we get ωkp(ω) + (ωn − 1)q(ω) = ωkp(ω) and the result follows since ωk ̸= 0, ∀ k ∈ [n].

Lemma 2.21. For n ≥ 2, given a polynomial p ∈ F[t], let p(t) =
∑n−1

i=0 ait
i. For some b0 ∈ F where

b0 ̸= a0, let p̂(t) =
∑n−1

i=1 ait
i + b0. Then p(t) and p̂(t) share no roots in F ie. Z(p)[F] ∩ Z(p̂)[F] = ∅.

Proof. We have p(t) − p̂(t) = a0 − b0 ≠ 0, thus p(t) and p̂(t) share no common values, in particular
share no roots.

Corollary 2.22. Given a matrix M with corresponding sequence of multiplicities (ni)
n
i=1, if for i, j ∈ [n],

0 < ni, nj ≤ n− 1, after swapping distinct elements of M , one from row i and one from row j, the new
matrix will have multiplicities ni = nj = 0.

Proof. Let αi, αj be the elements to be swapped in rows i, j respectively. Since ni, nj > 0, then
1 ∈ Z(gi)[F], Z(gj)[F]. We start by rotating rows i, j, thus cyclically permuting the coefficients of gi, gj
until αi, αj are the constant coefficients in gi, gj respectively ie. αi, αj are in the first column of M . By
Lemma 2.20, 1 is still a root of gi and gj . Using Lemma 2.21 on both polynomials gi, gj separately, when
we swap αi, αj , 1 ̸∈ Z(gi)[F], Z(gj)[F]. Finally, we can rotate rows i, j until αi is in the old position of
αj and αj is in the old position of αi and, using 2.20, even after these rotations, 1 ̸∈ Z(gi)[F], Z(gj)[F].
The new matrix is just M with αi and αj swapped but since 1 ̸∈ Z(gi)[F], Z(gj)[F] in the new matrix,
ni = nj = 0.

We will now prove Theorem 2.19. We start by arranging the n2 elements in a matrix M (we can’t
guarantee M is invertible). We then swap a series of elements between rows until we can guarantee
that the matrix is able to be unlocked by row rotations using our exact statement on when a matrix
can be unlocked, Theorem 2.10. Finally, we can perform the relevant row rotations, leaving us with an
invertible matrix made from the n2 elements. Even though we are performing changes to the matrix M

we will not keep track of these and will continually denote our matrix M .

Proof of Theorem 2.19. Since we have at most n2 − n+ 1 of the same element, we can always arrange
the n2 elements in a matrix M such that at most 1 row contains n copies of the same element and no
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row contains all zeroes. The condition that at most 1 row contains n copies of the same non-zero element
implies that there is at most i ∈ [n] such that ni = n− 1. This is because the polynomial with all entries
the same and non-zero is equal to a multiple of xn−1 + xn−2 + ...+ x+1 = xn−1

x−1 = (x−1)n

x−1 = (x− 1)n−1.
The condition that no row contains all zeroes implies that every ni is finite and since deg(gi(xi)) ≤ n−1,
ni ≤ n− 1 for all i ∈ [n].

We will now swap distinct elements from distinct rows, until all but one ni = 0 for i ∈ [n]. Given
two rows i, j ∈ [n] with multiplicities 0 < ni, nj ≤ n− 1, we can always find two distinct elements, one
from each row, since at most one row contains n copies of the same element. By Corollary 2.22, after
swapping these elements, ni = nj = 0. It is important to note that, in doing this, we never create a row
which contains n copies of the same element and thus we can always guarantee that at most one row of
the matrix M has n copies of the same element.

We repeat this process until there is at most one row i ∈ [n] with ni ̸= 0. It is clear no elements
have been swapped in row i since otherwise ni = 0. However, since ni ≤ n− 1 to start off with, we can
choose any σ ∈ Sn with σ(i) = n and since all other nj = 0, nj < σ(j) for all j ∈ [n]. Thus, by Theorem
2.10, M is unlocked by row rotations. Thus, by applying the necessary swaps and row rotations to our
starting matrix we constructed an invertible matrix out of our original n2 elements.

Unfortunately, due to the more complex condition involving perfect matchings on bipartite graphs
for the case when char(F) ∤ n, we will not be able to prove the same statement as in Theorem 2.19
straight away. Instead, we must state Hall’s marriage, an exact condition on when bipartite graphs have
perfect matchings, and introduce the key concepts of clusters, minimal clusters and cluster density.

Hall’s Marriage Theorem

First proved by Hall in [Hal86], Hall’s marriage theorem gives an exact condition on when a bipartite
graph has a perfect matching. According to [Hir07], it supposedly got its name from one of the many
ways the theorem can be posed: suppose we have a group of boys and girls, where we need to find
all the boys a partner from the group of girls. We can start by asking the girls to write a list of the
boys they find acceptable and we assume the boys will not turn down a date with a girl. Given this
information, can we match the boys and girls up in happy couples?

Definition 2.23. We recall that a perfect matching on a graph G is a subset of the edge set S ⊆ E(G)

such that every vertex in V (G) is contained in some edge in S. Now let G be a bipartite graph with
vertices V (G) = (A,B). Then, we define an A−perfect matching on G to be a subset of the edge set
S ⊆ E(G), such that every vertex of A is contained in some edge in S.

Remark 2.24. For a bipartite graph G with vertices V (G) = (A,B), if |A| = |B|, G has an A−perfect
matching ⇔ G has a B−perfect matching ⇔ G has a perfect matching.

We now state but do not prove Hall’s Theorem. A good proof is found in [DeV] using the theory of
M -alternating and M -augmenting paths.

Theorem 2.25 (Hall’s marriage theorem). Given a bipartite graph G with vertices V (G) = (A,B),
there exists an A−perfect matching on G ⇔ |W | ≤ |NG(W )| for all W ⊆ A.

We now introduce some notions that tie in closely with Hall’s Marriage Theorem and perfect
matchings, the first being the deficiency of a bipartite graph, originally defined by Ore in [Ore55].
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Definition 2.26. Given a bipartite graph G with vertices V (G) = (A,B), the deficiency of a set
U ⊆ V (G), is defined to be defG(U) := |U | − |NG(U)|. Furthermore, the deficiency of G with respect to
A is defined to be def(G;A) := maxU⊆A defG(U). Note that defG(∅) = 0 so we have that def(G;A) ≥ 0.
Finally, if |A| = |B|, the deficiency of G is defined to be def(G) := def(G;A) = def(G;B).

Lemma 2.27. For a bipartite graph G where |A| = |B|, then def(G;A) = def(G;B).

Proof. For a set U ⊆ A, by Definition 2.26, we have

defG(U) = |U | − |NG(U)| = |A| − |A\U | − |B|+ |B\NG(U)|

≤ −|NG(B\NG(U))|+ |B\NG(U)| = defG(B\NG(U)).

Thus def(G;A) ≤ def(G;B), so by symmetry of swapping A and B, def(G;A) = def(G;B).

We now define the original notions of clusters, minimal clusters and cluster density.

Definition 2.28. Let G be a bipartite graph with vertices V (G) = (A,B). We define a cluster
in G to be a set W ⊆ A where defG(W ) > 0 ie. |W | > |NG(W )|. Furthermore we say that a
cluster W ⊆ A is minimal if there does not exist a set U ⊂ W ⊆ A which is again a cluster. Let
clust(G;A) = {W ⊆ A : defG(W ) > 0} ie. the set of clusters in G and define the cluster density to be
cd(G;A) :=

∑
W∈clust(G;A) defG(W ).

Remark 2.29. It is easy to see, using Hall’s Marriage Theorem, Theorem 2.25, and Definition 2.26
and Definition 2.28, for a bipartite graph G with vertices V (G) = (A,B), the following are equivalent:

• G has an A−perfect matching,
• |W | ≤ |NG(W )| for all W ⊆ A,
• defG(W ) ≤ 0 for all W ⊆ A,
• def(G;A) = 0,
• cd(G;A) = 0.

We can finally return to our study of matrices and state the equivalent of Theorem 2.19 but now for
the case char(F) ∤ n, which has a similar but substantially harder proof. We will then be able combine
it with Theorem 2.19 to give an exact statement on when all matrices are unlocked by all permutations.

Theorem 2.30. For n ≥ 3, given n2 elements in a field F with char(F) ∤ n, where there are at most
n2 − n+ 1 of the same element or at most n2 − n zeroes, we can always construct an invertible n× n

matrix out of those elements.

Before we prove Theorem 2.30, we will need some technical lemmas. These aim to show that, by
swapping elements of a matrix M , we can strictly reduce the cluster density of the corresponding
bipartite graph GM and, in some sense, remove clusters until we are guaranteed to be left with a
bipartite graph which has a perfect matching, meaning M can be unlocked by row rotations.

Definition 2.31. Let G be a bipartite graph with vertices V (G) = (A,B). We will now define a set of
graphs, depending on some point p ∈ A and denoted Tp(G) which we refer to as transformed graphs. A
graph G′ ∈ Tp(G) if:

• V (G′) = (A,B) ie. G′ has the same vertices as G,
• (p, b) /∈ G ⇒ (p, b) ∈ G′ for all b ∈ B,
• (q, b) ∈ G ⇔ (q, b) ∈ G′ for all q ∈ A\{p}.

For a set of bipartite graphs S, let Tp(S) := ∪G∈STp(G).
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Lemma 2.32. Let G be a bipartite graph with vertices V (G) = (A,B) where |A| = |B|. Let W be a
minimal cluster in G, then for any p ∈ W , for all G′ ∈ Tp(G), cd(G′;A) < cd(G;A).

Proof. Let p ∈ W and G′ ∈ Tp(G). Then we aim to show that any set W ′ ⊆ A where p ∈ W ′ is not a
cluster in G′.

• Letting Q = (W ∩W ′)\{p}, then Q is not a cluster in G since otherwise W would not be minimal
as Q ⊆ W . Thus |NG(Q)| ≥ |Q|.

• We now claim NG(Q)⊔ (µn\NG(W )) ⊆ NG′(W ′). Since (q, b) ∈ G ⇔ (q, b) ∈ G′ for all q ∈ A\{p}
and p /∈ Q, then NG(Q) = NG′(Q) ⊆ NG′(W ′) as Q ⊆ W ′. Furthermore, since (p, b) /∈ G⇒ (p, b) ∈
G′ for all b ∈ B and p ∈ W,W ′, we also have that µn = NG({p})∪NG′({p}) ⊆ NG(W )∪NG′(W ′),
and thus (µn\NG(W )) ⊆ NG′(W ′) showing NG(Q)∪ (µn\NG(W )) ⊆ NG′(W ′). Finally, NG(Q)∩
(µn\NG(W )) ⊆ NG(W ) ∩ (µn\NG(W )) = ∅ and thus |NG′(W ′)| ≥ |NG(Q)|+ |µn\NG(W )|.

• Since W is a cluster, we know |W | > |NG(W )|, so as W ⊆ [n] and NG(W ) ⊆ µn, |µn\NG(W )| =
n− |NG(W )| > n− |W | = |[n]\W | ≥ |W ′\W |. Thus |µn\NG(W )| ≥ |W ′\W |+ 1.

Since |NG′(W ′)| ≥ |NG(Q)| + |µn\NG(W )| ≥ |Q| + |W ′\W | + 1 = |W ∩ W ′| − 1 + |W ′\W | + 1 =

|W ′\W | + |W ′ ∩ W | = |W ′| then W ′ is not a cluster. Finally, let U ∈ clust(G′;A). By the above,
p ̸∈ U , so since (q, b) ∈ G ⇔ (q, b) ∈ G′ for all q ∈ A\{p} then defG′(U) = |U | − |NG′(U)| =

|U | − |NG(U)| = defG(U). Also, since p ∈ W , W ̸∈ clust(G′;A) but W ∈ clust(G;A) and thus
cd(G′;A) =

∑
U∈clust(G′;A) defG′(U) <

∑
U∈clust(G;A) defG(U) = cd(G′;A).

Remark 2.33. It is interesting to note that Lemma 2.32 would not necessarily hold if we just required
the point p to be in a cluster and not a minimal cluster.

We now need to build up some results about how swapping elements in our matrix M affects the
corresponding bipartite graph GM

Lemma 2.34. For n ≥ 2, given a polynomial p ∈ F[t], let p(t) =
∑n−1

i=0 ait
i. Consider the polynomial

where we swap the first two entries ie. p̂(t) =
∑n−1

i=2 ait
i + a0t + a1. Then, if a0 ̸= a1, p(t) and p̂(t)

share no roots except for t = 1 ie. Z(p)[F] ∩ Z(p̂)[F] ∈ {∅, {1}}.

Proof. The result follows by considering p(t)− p̂(t) = (a1 − a0)(t− 1) and using a0 ̸= a1. Thus, p(t)
and p̂(t) share no common values, in particular no common roots, unless t = 1.

Lemma 2.35. Given a matrix M and bipartite graph GM , if M ′ is the matrix where we replace any
element in row i ∈ [n] with a different element, then GM ′ ∈ Ti(GM ).

Proof. Let M have corresponding polynomials gi(xi) =
∑

i∈[n]Mi jx
j−1
i for all i ∈ [n] and let α be

the element we want to replace which is in position (i, j). Let M̂ := rj−1
i (M) ie. the matrix where

we can rotate the elements in the ith row so that α is now in position (i, 1) and thus acts as the
constant of gi(xi). By Lemma 2.20, this does not change Z(gi)[F] ∩ µn, thus GM̂ = GM . Now, let M

be the matrix where we replace α with α′. By Lemma 2.21, if gi(xi) =
∑

i∈[n]M i jx
j
i , since α ̸= α′

then Z(gi)[F] ∩ Z(gi)[F] ∩ µn = ∅, thus in GM the vertex i ∈ [n] is connected to all the vertices in
µn that it wasn’t connected to in GM and all other vertices in [n] and their edges are identical, thus
GM ∈ Ti(GM ). Finally, let M ′ be the matrix where we undo the rotation we did at the beginning so
M ′ is simply M with one element in row i changed. By Lemma 2.20 again, GM = GM ′ which implies
GM ′ ∈ Ti(GM ).

Notation 2.36. For a graph G, for S ⊆ V (G), the induced subgraph G[S] is the graph whose vertex
set is S and whose edge set are those edges in G where both endpoints are in S ie. V (G[S]) = S and

11



(i, j) ∈ E(G[S]) ⇔ (i, j) ∈ E(G) and i, j ∈ S. Furthermore, if G is bipartite with vertices V (G) = (A,B),
then for SA ⊆ A and SB ⊆ B, the induced subgraph is denoted G[(SA, SB)].

Corollary 2.37. For A ⊆ [n], if M̃ is the matrix where we swap two different adjacent elements in
row i of M , then GM̃ [(A,µn\{1})] ∈ Ti(GM [(A,µn\{1})]).

Proof. By Lemma 2.20, we can move the two adjacent elements to be the first two row entries so that
they are the constant and linear term in gi(xi), leaving GM unchanged. By Lemma 2.34, when we swap
them, all the previous roots of gi(xi) are no longer roots except for xi = 1. Thus, the corresponding
graph of the new matrix lies in Ti(GM [(A,µn\{1})]). Finally, we use Lemma 2.20 to move the elements
back to their starting positions implying GM̃ [(A,µn\{1})] ∈ Ti(GM [(A,µn\{1})]).

We are now in a position to prove Theorem 2.30, which will follow the same process we used for the
char(F)|n, Theorem 2.19. We arrange our n2 elements in a matrix M and perform a series of swaps
of elements, thus reducing the cluster density of the corresponding bipartite graph GM , until we can
guarantee the matrix can be unlocked by row rotation using our exact condition on when matrices
can be unlocked, Theorem 2.16. Applying the relevant row rotations, the matrix made out of the n2

elements is now invertible.

Proof of Theorem 2.30. To start, since we have at most n2 − n+ 1 of the same element, we can always
arrange the n2 elements in the matrix M such that at most 1 row contains n copies of the same element
and no row contains all zeroes. The condition that at most 1 row contains n copies of the same non-zero
element implies that there is at most 1 vertex in [n] which has only 1 edge and that edge is connected
to 1 ∈ µn. This is because the polynomial with all entries the same and non-zero is equal to a multiple
of xn−1 + xn−2 + ...+ x+ 1 = xn−1

x−1 and thus has roots µn\{1}. The condition that no row contains all
zeroes implies that every vertex in [n] has at least 1 edge connected to it, since everything, including
µn, is a root of the zero polynomial.

We need to resolve a few technicalities before we perform the majority of the switches. In particular,
we need 1 ∈ µn to be connected to at least 1 vertex in [n] but still keep the condition that there is
at most 1 vertex in [n] which has only 1 edge and that edge is connected to 1 ∈ µn. If 1 ∈ µn has
no edges, we will swap two elements of M to rectify this. Since at most 1 row contains all the same
elements, we can always find two different elements α and β in two different rows i and j respectively
to swap, leaving us with a new matrix M̂ . By Lemma 2.35, since (i, 1), (j, 1) are not edges of GM ,
then (i, 1), (j, 1) are edges in all the graphs in Ti(Tj(GM )) and GM̂ ∈ Ti(Tj(GM )). There is now the
unwanted case that in GM̂ , i, j ∈ [n] are both now only connected to 1 ∈ µn. If this happens, we know
that rows i and j of M̂ are both filled with n copies of β and α respectively. So swap α and β back so
our matrix returns to M and now swap an extra β and α between rows i and j giving us a new matrix
M with GM ∈ Ti(Tj(GM )). This time, however, since n ≥ 3, rows i, j ∈ [n] in M both contain at least
two distinct elements and thus in GM , i, j ∈ [n] are connected to 1 ∈ µn as well as another vertex in
µn. We reset our notation so M is the matrix with the necessary switches such that GM has our desired
properties.

Since GM satisfies these properties, if there is a vertex in [n] which is only connected to 1 ∈ µn,
denote it v, otherwise let v be any vertex connected to 1 ∈ µn. We now define the graph G′

M :=

GM [([n]\{v}, µn\{1})]. The reason we performed all these tedious switches is so we can guarantee that
every vertex in [n]\{v} ⊂ V (G′

M ) has at least one edge, implying none of the rows are made up of only
one distinct element.
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If there is a cluster in G′
M , there is a minimal cluster in G′

M from which we pick a vertex i. We
know that none of the rows of M are made up of only one distinct element, including row i, so
by Corollary 2.37, we can swap two distinct adjacent elements, giving us a new matrix M̃ where
G′

M̃
:= GM̃ [([n]\{v}, µn\{1})] ∈ Ti(G

′
M ). Also, by Lemma 2.32, cd(G′

M̃
; [n]\{v}) < cd(G′

M ; [n]\{v}).
Repeating the above process, resetting our notation back to M every time, we slowly untangle clusters
in the graph G′

M thus reducing cd(G′
M ; [n]\{v}) until cd(G′

M ; [n]\{v}) = 0 and thus by Remark 2.29,
we have a perfect matching on G′

M . At this point, we will see that we now have a perfect matching
on GM , since (v, 1) ∈ E(GM ). Now, by Theorem 2.16, since char(F) ∤ n, M can be unlocked by row
rotations and after applying these rotations, our n2 elements make up an invertible matrix.

Remark 2.38. It is very easy to apply the proof of the above Theorem, Theorem 2.30, to the n = 2

case since we only use the condition that n ≥ 3 once. If we rewrite the third paragraph of the proof
in the n = 2 case, it is easy to see that the only case we need to reconsider is when we have matrix

M =

(
a −a

−a a

)
for any a ∈ F and thus E(GM ) = {(1,−1), (2,−1)}. In this case, when we swap two

different elements, we get M̂ =

(
a −a

a −a

)
. Now E(GM̂ ) = {(1, 1), (2, 1)} so GM̂ now has two vertices

connected to 1 ∈ µ2 and by the proof, we should switch a and −a back. However, when we switch the
other a and −a, we’re back to the matrix M and thus caught in an infinite loop. In fact, it is no wonder
the proof doesn’t work for this matrix, since we can never construct an invertible matrix if we’re given
the elements {a, a,−a,−a}! So, by considering this case separately, we can actually give the following
statement.

For n ∈ N, given n2 elements in a field F, then, unless there are more than n2 − n+ 1 of the same
element, more than n2 − n zeroes or the elements are {a, a,−a,−a} for some a ∈ F, we can always
construct an invertible n× n matrix out of those elements.

GM

µ2

[2]

1

1 2

−1

GM̂

1

1 2

−1

Figure 2: The bipartite graphs GM and GM̂ corresponding to M and M̂ respectively from Remark 2.38.

Corollary 2.39. For n ∈ N, given n2 elements in a field F, we can always construct an invertible n×n

matrix out of those elements if and only if there are at most n2 − n+ 1 of the same element, at most
n2 − n zeroes and the elements are not {a, a,−a,−a} for some a ∈ F.

Proof. Then n = 1 case is trivial. For n ≥ 2, the ⇐ follows from Theorem 2.30, Theorem 2.19 and
Remark 2.38. For the ⇒ direction, if there are more than n2 − n + 1 of the same element, by the
pigeonhole principle, there are always going to be two rows filled with only one distinct element no
matter how we rearrange the matrix. Thus, since those two rows are not linearly independent, the
determinant of the matrix will always vanish. Similarly, if there are more than n2 − n zeroes, again by
the pigeonhole principle, there will be at least one row made up of just zeroes and thus the determinant
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will always be zero. Finally, for a ∈ F, the determinants of

(
a a

−a −a

)
,

(
a −a

−a a

)
and

(
a −a

a −a

)
are

all zero so if the elements are {a, a,−a,−a}, we cannot rearrange the elements such that the matrix is
invertible.

Remark 2.40. Although we are talking about being able to construct invertible n× n matrices from n2

elements in Theorem 2.19, Theorem 2.30 and Corollary 2.39, this is equivalent to saying matrices made
up of those n2 elements can be unlocked by all permutations.

Remark 2.41. Given n2 elements in a field F which can be arranged into an invertible n× n matrix
as in Corollary 2.39, the proofs of Theorem 2.30 and Theorem 2.19 in fact both give algorithms to find
an invertible n× n matrix constructed from those elements when combined with Remark 2.8.

2.3 ...by rotations of its rows and columns?

We now consider rotations of both rows and columns of our matrix. Letting ei denote the standard
ith basis vector as before, let ci(M) := (ri(M

T ))T ie. a rotation of the ith column by 1 element. Then
ci ∈ Sn2 and for C := {ci : i ∈ [n]} ⊆ Sn2 , then ⟨R,C⟩ ⊆ Sn2 is the set of all row and column rotations.
We say M is unlocked by row and column rotations if ∃σ ∈ ⟨R,C⟩ such that det(σ(M)) ̸= 0.

Example 2.42. Let’s consider the matrix γ =

 2 −7 5

−3 −8 11

2 0 −2

 ∈ M3(C) again. From Example 2.3 we

know we won’t get a non-zero determinant by rotating the rows, however, by rotating the first column, we

get c1(γ) =

−3 −7 5

2 −8 11

2 0 −2

 which det(c1(γ)) = −150. Now consider ν =

−8 1 7

6 4 9

2 −5 3

 ∈ M3(F19).

It is easy to see that ν is not unlocked by just rows or just columns ie. det(σ(ν)) = 0 for all σ ∈ ⟨R⟩∪⟨C⟩
since both the rows and columns add up to 0. However, if we rotate the first column down by one we

have c21(ν) =

 2 1 7

−8 4 9

6 −5 3

 and then if we rotate the top row by one we get r21c
2
1(ν) =

 7 2 1

−8 4 9

6 −5 3


which has determinant 1 ̸= 0.

We present a final original theorem, building on our work to which matrices are unlocked by all
permutations.

Theorem 2.43. For n ≥ 3, given a matrix M ∈ Mn(F), then M is unlocked by row and column
rotations if and only if there are at most n2 − n+ 1 of the same element or at most n2 − n zeroes.

As we can see, by comparing with Theorem 2.30, allowing rotations of both row and columns allows
us as much freedom as rearranging the elements in any way we like. To see why, we need to briefly
revisit some group theory of the symmetric groups Sn.

Lemma 2.44. By rotating the rows and columns of a matrix M ∈ Mn(F), we can cyclically permute
any n elements of the matrix in any order leaving all other entries unchanged.

Proof. Choose n elements in the matrix that we want to cyclically permute. We now want to manoeuvre
all of these elements into the first row in the specified order just by using rotations of rows and columns.
In the specified order that we want our elements to be cyclically permuted, we move one element at a
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time, making sure not to alter any of the elements already correctly placed in the first row. Say we
have an element currently at (i, j) which we want to move to position (1, k). If i = 1, then rotate the
jth column by one position and let the element be at (i, j) where i ̸= 1. Now rotate the ith row until
the element is in column k and rotate the kth column until the element is in (1, k). In this process, we
do not alter the position of any element already placed correctly in the first row. By repeating this for
all n elements we want to cyclically permute, we have a sequence of rotations which get us from our
starting matrix M to the matrix with the elements we want to cyclically permute in the first row in the
specified order. Now, we rotate the top row to cyclically permute the elements as specified and then
perform the inverse of each rotation in our sequence in reverse order to get back to the starting matrix
M now with those n elements cyclically permuted. Clearly this was done only using rotation of rows
and columns since the inverse of a rotation is again a rotation.

We will now need a standard result from group theory which we will not prove here, however, a
proof can be found in Cook’s lecture notes, [Coo10].

Lemma 2.45. For n ≥ 5, the only normal subgroups of Sn are {e}, An and Sn.

We now prove another group theory result utilising Lemma 2.45.

Lemma 2.46. For n ≥ 3,

n-cycles in Sn2 generate

An2 if n is odd,

Sn2 if n is even.

Proof. Since conjugacy classes in Sn2 are given by elements with the same cycle shape, the set of
n−cycles form a full conjugacy class. Letting the subgroup generated by the n−cycles be denoted N ,
then N is normal in Sn2 . To see this, notice that for all g ∈ Sn2 ,

g−1Ng = g−1
{∏

a : a is an n−cycle
}
g =

{∏
g−1ag : a is an n−cycle

}
⊆ N

since the n−cycles form a conjugacy class and thus g−1ag is again an n−cycle for any g ∈ Sn2 .
Now we use Lemma 2.45 and notice that for n odd, an n−cycle is an even permutation ie. has

sgn(σ) = 1, and since sgn is multiplicative, N will only contain elements σ ∈ Sn2 with sgn(σ) = 1 ie.
even permutations. Thus, for n odd, N ≠ Sn2 as Sn2 contains odd permutations and N is clearly not
the trivial subgroup then N = An2 . Similarly, for n even, N ̸⊆ An2 since, for n even, an n−cycle is an
odd permutation thus N = Sn2 .

We will now prove Theorem 2.43 by using the fact that the n-cycles generate either An2 or Sn2 and
then using Corollary 2.39.

Proof of Theorem 2.43. By Lemma 2.44, if we think of Sn2 acting on each of the elements in M , then
the n−cycles given by rotations of the rows and columns generate all n−cycles in Sn2 . Now, combining
this with Lemma 2.46, we have that for n even, we can apply any permutation to the elements of
M just by rotating the rows and columns and for n odd, we can apply any even permutation to the
elements of M just by rotating the rows and columns.

Now, the result follows for n even using Corollary 2.39, and we only have to work slightly harder for
n odd. In this case, if we recall that, in the process of proving both Theorem 2.30 and Theorem 2.19,
we proved that by swapping elements, we could rearrange M into a matrix with non-zero determinant.
If this permutation is even, we are done since this permutation can be realised by rotating rows and
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columns. If this permutation is odd, we choose two rows and swap all pairs of elements in the same
column between the rows. Since n is odd we are adding an odd number of transpositions to the odd
permutation thus leaving us with an even permutation. Swapping two rows of a matrix multiplies the
determinant by −1, thus, it stays non-zero, and since we applied an even permutation to get matrix
into this form, we could also have got to this point by rotating rows and columns.

Corollary 2.47. For n ∈ N, given a matrix M ∈ Mn(F), then M is unlocked by row and column
rotations if and only if there are at most n2 − n+ 1 of the same element, at most n2 − n zeroes and the
elements are not {a, a,−a,−a} for some a ∈ F.

Proof. Again, the n = 1 case is trivial and n ≥ 3 is given by Theorem 2.43. Extending to the case n = 2,
the normal subgroups of S4 are given by {e}, V4, A4, S4 where V4 ⊆ A4 so since a 2−cycle is an odd
permutation and using the fact that the rotations of rows and columns generates a normal subgroup,
then any permutation of the elements of a 2× 2 matrix can be generated by rotations of the rows and
columns. The result now follows using Corollary 2.39.

3 Further Directions for Research

We conclude this paper by discussing 3 further directions that research could be taken in, along the
same lines as that of this paper.

• We gave exact conditions on when matrices could be unlocked by ⟨R⟩ (row rotations), ⟨R,C⟩
(row and column rotations) and Sn2 (all permutations) where we circumvented the proof for row
and column rotations by proving that ⟨R,C⟩ was equal to either An2 or Sn2 depending on the
parity of n and then appropriating our proof for all permutations. An obvious route for further
research would be to give conditions on when matrices can be unlocked by other subsets of Sn2 .
We assume that taking subsets such as ⟨R⟩ with nice properties will give nicer results.

• In [BKS14], for matrices M , constructed directly from bipartite graphs, a formula is given for
the number of row rotations that unlock the matrix, given by supp(f̂M ) where f̂M is the discrete
Fourier transform of fM . An investigation into whether a similar formula could be given for any
matrix M would likely be successful. However, trying to find formulae for the number of elements
of other subsets of Sn2 that the matrix is unlocked by seems fruitless based on the slightly arduous
proof of even one of these elements existing.

• The polynomial ideal J (n) defined below is the subject of Kézdy and Snevily’s paper titled
Polynomials that Vanish on Distinct Roots of Unity, [KS04], where amongst other things, they
give a Gröbner basis for the ideal J (n) and use Gröbner basis methods to give a characterisation
of J (n) based on the Combinatorial Nullstellensatz.

Definition 3.1. Let J (n) be an ideal in C[x1, ..., xn], where g ∈ J (n) ⇔ g(x) = 0 for all x ∈ µn
n

with distinct components ie. xi ̸= xj for i ̸= j.

It is easy to see that for g ∈ C[x1, ..., xn], let f(x) := g(x)(detVn)(x), then, g ∈ J (n) ⇔
µn
n ⊆ Z(f) ie. f(x) = 0 for all x ∈ µn

n. Combining the above with Lemma 2.13 we get g ∈ J (n) ⇔
(detVn)g ∈ ⟨xni − 1 : i ∈ [n]⟩. This is given as a Remark on p.54 of [KS04] and should make the
definition of fM (x) in Definition 2.4 slightly less arbitrary. We now recall the graph polynomial
fG for some graph G.
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Definition 3.2. The graph polynomial fG ∈ C[x1, ..., xn] of a graph G = (V,E) where we
enumerate V = {vi}ni=1 is given by

fG(x) :=
∏

(vi,vj)∈E
i<j

(xj − xi).

Theorem 3.3. [Alo99] Let G = (V,E) be a graph where we enumerate V = {vi}ni=1. Then G is
k-colourable if and only if the graph polynomial fG ̸∈ ⟨xki − 1 : i ∈ [n]⟩.

It is interesting to note that, denoting Kn the complete graph on n nodes and Vn the Vandermonde
matrix, detVn(x) = fKn(x). Thus, for a graph G with vertices [n], we could define the ideal JG(n)

where g ∈ JG(n) ⇔ fGg ∈ ⟨xni − 1 : i ∈ [n]⟩. Then, it is clear that JKn(n) = J (n). JG(n) would
then have the property that g ∈ J (n) ⇔ g(x) = 0 for all x ∈ µn

n where xi ̸= xj if (i, j) ∈ E(G).
We can take this idea a step further by extending to hypergraphs. A similar result to Theorem
3.3 which can be found in Alon’s paper, [Alo99], gives an exact condition on when an 3-uniform
hypergraph is 2-colourable. This result can easily be generalised to any hypergraph, not just
3-uniform ones.

Theorem 3.4. For k, n ∈ N, let ω be a primitive kth root of unity in C and let H = (V,E)

be a hypergraph where we enumerate the vertices V = {vi}ni=1. Now define a polynomial gH ∈
C[x1, ..., xn] where

gH(x) =
∏
e∈E

∏
τ∈µk

((∑
vi∈e

xi

)
− |e|τ

)
Then H = (V,E) is k-colourable if and only if gH ̸∈ ⟨xki − 1 : i ∈ [n]⟩.

For a hypergraph H with vertices [n], we could define ideals JH(n) where h ∈ J (n) ⇔ gHh ∈
⟨xni − 1 : i ∈ [n]⟩ ⇔ h(x) = 0 for all x ∈ µn

n where |{xi : i ∈ e}| ≠ 1,∀ e ∈ E(H).
Gröbner bases for these ideals could likely be found by hand and could certainly be computed.
Perhaps even exact conditions on membership of these ideals could be constructed as was done
for J (n) in [KS04]. One application, similar to those of [KS04], that could be established is the
following:
Let G = (V,E) be the bipartite graph where V = ([n], µn), and ω is a primitive nth root of unity.
Then define a polynomial g ∈ C[x1, ..., xn] where

∏
(i,ωj )̸∈E(G)(xi − ωj). By Lemma 2.15, we have

that G has a perfect matching ⇔ g ̸∈ J (n). Now let H(n,3) denote the hypergraph on n nodes where
E(H(n,3)) contains every possible hyperedge of size 3 and no others. Then G contains a matching
where we allow at most two nodes in [n] to connect to the same node in µn ⇔ g ̸∈ JH(n,3)

(n).
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