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Abstract

The polynomial method aims to solve combinatorial problems by encoding their structure in carefully-
constructed polynomials and then analysing the sets on which said polynomials vanish. The method
has only begun to be formalised in the last 25 years and has garnered attention by providing relatively
short and simple solutions to long-standing problems.

In this report, we first aim to give a well-rounded representation of the polynomial method by
exploring a range of problems from extremal combinatorics. We include arguably the most well-known
results which use the polynomial method; Dvir’s proof of the Finite Field Kakeya Conjecture and
Ellenberg and Gijswijt’s cap set bound, where, in doing so, we also explore Tao’s symmetric reformulation
of the Croot-Lev-Pach Lemma. We then explore some of the many applications of the Combinatorial
Nullstellensatz, where we extend a result from Alon’s original paper [Alo99] about k-colourings of
hypergraphs.

Finally, letting Sn2 act on the elements of an n× n matrix by permutation, we investigate when
a matrix can be permuted by elements in certain subsets of Sn2 such that it is invertible. To do this,
we generalise and extend a result, based on the Combinatorial Nullstellensatz, by Brauch, Kézdy and
Snevily and we use this, in particular, to give an exact condition on when n2 elements of a field can be
rearranged to form an invertible matrix.
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Introduction

Combinatorics is the branch of mathematics traditionally associated with counting. It shows up in almost
every other area of mathematics and, as a result, has only been considered an area of mathematics in
its own right since the late 20th century, much more recently than other more traditional staples of
the mathematical curriculum. Due to its incredibly broad reach into other areas of mathematics and
applications to computer science, combinatorics is now a flourishing area of mathematical research.

In a similar vein, methods incorporating the vanishing properties of polynomials had been in use
decades before the term the polynomial method was coined in the 1990s by Alon, referring to applications
of his theorem, the Combinatorial Nullstellensatz from [Alo99]. This was the case particularly in the
area of number theory where Baker’s theorem and Stepanov’s method used key insights about the zero
sets of well-constructed polynomials in the 1960s, as covered in Chapter 4 of [Tao14]. Arguably, however,
it was Dvir’s 2-page proof of the Finite Field Kakeya Conjecture in 2008, [Dvi08], using a relatively
basic argument that brought the polynomial method to the attention of many. In a comment from
2010 on mathoverflow.net, [Tao10], Tao remarks that Dvir’s short proof of the Finite Field Kakeya
Conjecture came as shock to those who had been working on the problem, him included, as it had been
thought to be a fairly intractable problem.

Since 2008, a number of texts covering different aspects of the polynomial method have appeared and
many textbooks and lecture series in combinatorics now contain a chapter dedicated to the polynomial
method. However, as Tao notes in his survey article from 2014, [Tao14], the capabilities of the polynomial
method are still fairly unknown, making great leaps in some directions and very little progress in others.

The two key areas in which the polynomial method has been developed furthest are extremal
combinatorics, where we focus on bounding the size of finite sets with given properties, and combinatorial
geometry, where we study discrete geometric objects. Although we will not cover polynomial methods
in combinatorial geometry in this report, they are an incredibly rich area of research. Notable successes
include Guth and Katz’s proof of the 3D joint conjecture in [GK10] and also their tight bound on the
Erdős distinct distances problem in [GK15]. This and much more is covered in Guth’s [Gut16] and
Sheffer’s [She22] textbooks which are both devoted to the subject of polynomial methods in geometry.

In this report, we aim to give a general overview of the polynomial method as it is used in extremal
combinatorics. In Chapter 1 we study vector spaces of polynomials, as well as proving general results
about how the degree of a polynomial affects the size of its zero set such as the Schwartz-Zippel Lemma.
These results allow us to conclude the chapter by stating Dvir’s proof of the Finite Field Kakeya
Conjecture, a result giving a lower bound on the size of so-called Kakeya sets. In Chapter 2, we turn
our attention to the Croot-Lev-Pach Lemma, which we use in Tao’s symmetrised form to prove upper
bounds on the size of sunflower free sets and cap sets. In Chapter 3, we focus almost entirely on Alon’s
Cominatorial Nullstellensatz, a seemingly magical result, which we use to give lower bounds on the size
of sum sets in the Cauchy-Davenport Inequality and the Erdős-Heilbronn conjecture.
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From this point forwards, we take a more research-based stance and start using the Combinatorial
Nullstellensatz to give results about the existence of objects instead of extremal statements. In this
way, we end Chapter 3 by proving two original existence statements: the first, showing we can always
construct an invertible matrix using every element from a given set at least once, and the second, an
exact condition on when a hypergraph is k-colourable in terms of a polynomial ideal. These ideas
lead us into Chapter 4 where we define the notion of a matrix being able to be unlocked and extend
some theory, developed by Brauch, Kézdy and Snevily in [BKS14], to prove a set of original theorems
giving exact conditions on when a matrix can be unlocked by various subsets of Sn2 . In particular, we
give exact conditions on when n2 elements of a field can be arranged into an n× n matrix such that
the matrix is invertible. We conclude Chapter 4 by discussing a broader result by Kézdy and Snevily,
the main result in [KS04], and indicate some further directions that research could be taken before
concluding the project.

Notation

For n ∈ N, S a set, R a commutative ring and F a field, then
• N0 := {0} ∪ N,
• [n] := {1, 2, ..., n},
• Zn := Z/nZ,
• Sn denotes the set of permutations of [n],
• F denotes the algebraic closure of F,
• x := (x1, ..., xn) and for a ∈ Fn, then x+ a := (x1 + a1, ..., xn + an),
• for α ∈ Nn

0 , then |α| =
∑

i∈[n] αi and xα :=
∏

i∈[n] x
αi
i ,

• µn denotes the set of the nth roots of unity, generated by a primitive nth root of unity ω,
• the standard dot product of vectors x, y ∈ Fn is given by x · y =

∑
i∈[n] xiyi,

• Mn(F) denotes the set of n× n matrices with coefficients in F where M = (Mi j)i,j∈[n],
• Idn denotes the identity n× n matrix,
• for a function f : S → F, Z(f) := {x ∈ S : f(x) = 0} is the set of roots of f ,
• R[x] = R[x1, ..., xn] := {

∑
α∈Nn

0
cαx

α : cα ∈ R, cα ≠ 0 for only finitely-many α ∈ Nn
0} is the

vector space/ring of polynomials in n variables with 0 ∈ R[x] denoting the zero polynomial,
• P,Q ∈ R[x] are identical, denoted P (x) ≡ Q(x), if they have exactly the same coefficients.
• for polynomials pi ∈ R[x], ⟨pi(x)⟩ denotes the ideal in R[x] generated by the pi,
• for P ∈ R[x], we naturally let Z(P ) := {x ∈ Rn : P (x) = 0} however for a subset A ⊆ Rn then
Z(P )[A] := {x ∈ A : P (x) = 0},

• the indicator function on S is defined to be IS : S → R where

IS(x) :=

1 if x ∈ S,

0 if x ̸∈ S,

• we denote a graph G = (V (G), E(G)) (sometimes just G = (V,E)) where V (G) is the set of
vertices and E(G) is the set of edges and for a subset of the vertices W ⊆ V (G), NG(W ) denotes
the set of neighbours of elements in W ,

• if G is a bipartite graph, the vertices of G can be divided into two disjoint sets A and B, denoted
V (G) = (A,B), and we denote edges of G by (a, b) where a ∈ A and b ∈ B.
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Chapter 1

Vector Spaces and Polynomials

In this Chapter, we will study vector spaces of polynomials in many variables using methods from linear
algebra to leverage results. We will also look at the interaction between polynomials, their degrees
and their roots. Combining these two viewpoints we will finish the chapter by proving the Finite Field
Kakeya Conjecture following Dvir’s elegant approach in [Dvi08].

1.1 Linear Algebra Method

Before we look at vector spaces of polynomials, we first motivate their use with two classic problems
from combinatorics, which can be solved using the linear algebra method. In the same way that the
polynomial method uses properties of sets where polynomials vanish to give insight into the problem,
the linear algebra method traditionally uses properties about the rank of a carefully-constructed matrix.
To introduce the linear algebra method, we first travel to Oddtown and Eventown, following [BF22].

Oddtown and Eventown

Suppose there are two neighbouring towns, Oddtown and Eventown, each with n residents, who are
intent on forming as many clubs as possible where any two clubs must share an even number of people.
However, while Oddtown has the tradition that every club must have an odd number of residents in it,
Eventown insists that its clubs contain an even number. The two towns have had violent disagreements
about whose rule allows the most distinct clubs to be created. So who is correct?

Theorem 1.1. Try as they might, the residents of Oddtown will never be able to form more than n

distinct clubs, whereas the Eventowners will be able to create up to 2⌊
n
2
⌋ distinct clubs.

Definition 1.2. The characteristic vector of a subset S ⊆ [n], denoted by xS ∈ Fn, is defined to be

(xS)i :=

1 if i ∈ T,

0 if i ̸∈ T.

Proof. Since we are considering the number of distinct clubs, we can think of the residents of the 2

towns as the members of the set [n] and the clubs in the 2 towns as collections of subsets of [n]. To
simplify things, we let our characteristic vectors sit in Fn

2 . Then, we see that for clubs A,B ⊆ [n], then
xA · xB = |A ∩B|, in particular, ∥xA∥2 = xA · xA = |A|.
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We first prove the bound for Oddtown. So, assume that F is a set of clubs satisfying Oddtown’s
rules. Then, for A,B ∈ F ,

xA · xB =

1 if A = B,

0 if A ̸= B.

Notice that the matrix M = (xC)C∈F with columns given by the characteristic vectors for the clubs in
F is orthogonal since MTM = Id|F|. Using the fact from linear algebra that for matrices A,B ∈ Mn(F)
then rank(AB) ≤ min(rank(A), rank(B)) then rank(M) ≥ rank(MTM) = rank(Id|F|) = |F|. Now,
since M is of size |F| × n, we get the bound |F| ≤ rank(M) ≤ min(|F|, n) ≤ n.

On the other hand, assume G is a set of clubs satisfying Eventown’s rules and consider the subspace
S = spanF2

{xC : C ∈ G}. We can note that xA ·xB = 0, ∀A,B ∈ G and this implies that S ⊆ S⊥ = {v ∈
Fn
2 : x · v = 0, ∀x ∈ S}, in particular, dim(S) ≤ dim(S⊥). Using the rank-nullity theorem for the matrix

with rows given by vectors xC for all C ∈ G, we have 2 dim(S) ≤ dim(S) + dim(S⊥) = dim(Fn
2 ) = n

and thus dim(S) ≤ ⌊n2 ⌋. So, we have our desired bound |G| ≤ |S| = 2⌊
n
2
⌋.

Corollary 1.3. Both of these bounds are saturated. Thus, Eventown can form an exponential number
of clubs as opposed to Oddtown’s linear bound on the number of clubs and so they win the argument.

Proof. We can create n clubs in Oddtown by assigning each person to their own club and we can create
2⌊

n
2
⌋ clubs in Eventown by creating ⌊n2 ⌋ pairs of residents and taking every possible combination of

those pairs.

Remark 1.4. Since 2⌊
n
2
⌋ ≤ n for n ≤ 5, Eventown only wins as long as Oddtown doesn’t find a way to

drastically reduce the number of people in Eventown!

We note that the key step in proving the Oddtown bound was showing that each characteristic
vector representing a club was linearly independent, thus, we were able use the dimension of the whole
space as a bound. Fisher’s inequality is a generalisation of the Oddtown bound which can also be proved
using a simple rank argument. It states that, given a collection F of non-empty subsets of [n], then if,
for some fixed k, |A ∩B| = k for all distinct A,B ∈ F , then |F| ≤ n. Frankl and Wilson gave an even
greater generalisation of this in [FW81].

Maximal Equidistant Sets

Let’s ask a seemingly unrelated question, but one where rank will again play a key role: what is the
maximum number of points you can draw on a piece of paper such that the distance between every 2

points is the same?

2 points ✓ 3 points ✓ 4 points ✗

Figure 1.1: Subsets of R2 marked as to whether they are equidistant sets or not.
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Example 1.5. Figure 1.1 seems to suggest that we will never be able to draw 4 points in R2 which are
all the same distance apart unless we allow ourselves 2 different distances. Indeed, 3 distinct circles
in the plane have maximum 3 points where all 3 intersect. However, if we allow ourselves an extra
dimension, a tetrahedron in R3 has 4 equidistant points.

Moving down a dimension instead, if we try to draw 3 equidistant points a < b < c in R, then
c− b = c− a = b− a then a = b = c so we get a contradiction, thus we can draw maximum 2 equidistant
points on a line.

With this in mind, we might conjecture that the maximum number of equidistant points in Rd is
d+ 1 which we will prove now in a very similar way to the Oddtown and Eventown problem.

Theorem 1.6. Let d ∈ N and let N(d) denote the maximum number of equidistant points in Rd with
respect to the standard Euclidean metric. Then N(d) ≤ d+ 1.

Proof. Without loss of generality, let {0, p1, ..., pn} ⊆ Rd be our equidistant set where ∥pi∥2 = 1

and ∥pi − pj∥2 = 1,∀i, j ∈ [n]. Using the standard dot product on Rd, we thus have ∥pi − pj∥2 =

∥pi∥2 + ∥pj∥2 − 2pi · pj = 2(1− pi · pj) and thus

pi · pj =

1 if i = j,

1
2 if i ̸= j.

Now we define the matrix M = (pT1 , ..., p
T
n ) of dimension n× d with columns given by the points in our

equidistant set. Notice that the n× n matrix MTM is simply the Gram matrix of our equidistant set
and we can rewrite it as MTM = 1

2(Id+J) where J is the n× n matrix filled with 1s. The eigenvectors
of J are e1 − ei for 2 ≤ i ≤ n which all have eigenvalue 0 and e1 + ...+ en which has eigenvalue n. Thus,
det(t Id−I) = (t− n)tn−1 and substituting in t = −1 and multiplying both sides (−1

2)
n, we have

det(MTM) = det(
1

2
(Id+I)) =

(
−1

2

)n

det(− Id−I) = (−1)n
1

2n
(−1− n)(−1)n−1 =

n+ 1

2n
̸= 0

and thus n = rank(MTM) ≤ rank(M) ≤ d. So we have N(d) ≤ d+ 1.

Just as in the proof of the bound on Oddtown, the key step in proving N(d) ≤ d+ 1 was proving
that, ignoring 0, each equidistant point pi is linearly independent in Rd. We can also saturate this
bound since a regular d-simplex in Rd is an equidistant set with d+1 points. The regular d-simplex can
be explicitly constructed by considering the d-dimensional hyperplane x1 + x2 + ...+ xd+1 = 1 in Rd+1.
Now the points e1, ..., ed+1 form the vertices of a regular d-simplex and are thus also an equidistant set
in a space isomorphic to Rd. This construction will give us insight as well when we want to construct
examples of 2-distance set later on.

1.2 Polynomials over Vector Spaces

Now we have had a look at some linear algebra techniques, we can start looking at the interaction
between vector spaces of polynomials and the degree and zeroes of said polynomials, following the proof
of the Finite Field Kakeya Conjecture by Sheffer in [She22]. This will give us results which we will need
to prove the Finite field Kakeya Conjecture and Theorem 2.3 later on.

Lemma 1.7 (Factor Theorem). For a commutative ring R and polynomial f ∈ R[t], then ∀a ∈ R,
f(a) = 0 ⇔ (t− a)|f(t).
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Corollary 1.8. For a polynomial f ∈ R[t], if deg(f) < |Z(f)| then f is the zero polynomial.

Thus, for a non-zero polynomial in 1 variable, its degree gives us a bound on the size of its zero set
and the zero sets of low-degree polynomials carry ’less’ combinatorial information in some sense, which
will hold as we introduce more variables.

Definition 1.9. For a commutative ring R and a non-zero polynomial P ∈ R[x1, ..., xn] where P (x) =∑
α∈Nn

0
cαx

α for cα ∈ R, the degree of P , denoted deg(P ) := max{
∑

i∈[n] αi : α ∈ Nn
0 , cα ̸= 0} ie.

the sum of the powers in the "largest" monomial with non-zero coefficient. For convenience, we set
deg(0) := −∞.

It is well-known that both functions and polynomials form vector spaces and we examine the sizes
of these spaces.

Lemma 1.10. For a finite set E and field F, the vector space of functions on E, denoted FE := {f :

E → F}, has dimension |E|.

Proof. A basis for FE is given by {I{e}}e∈E .

Lemma 1.11. The vector space of polynomials in n variables with degree at most d, denoted Polyd(F) ⊆
F[x1, ...xn] has dimension

(
n+d
n

)
.

Proof. There is a bijection between the number of monic monomials with degree at most d ie. xi for
i ∈ Nn

0 where |i| ≤ d and integer partitions of d with n+1 partitions, given by xi ↔ (d−|i|, i1, i2, ..., in)d.
Counting the number of ways we can decompose d elements into n+ 1 groups is equivalent to choosing
n places for the partitions to go out of n+ d spaces.

Definition 1.12. For E ⊂ Fn, the natural evaluation map, denoted ϕE : Polyd(F) → FE, maps
polynomials with degree at most d to functions on E given by ϕE(P ) : E → F, e 7→ P (e). Since
(P +Q)(e) = P (e) +Q(e), then ϕE is a linear map.

While Definition 1.12 may seem trivial, it is important to take care when using properties of
polynomials and the functions they induce in vector spaces.

We can now prove a relation on the size of sets that can be captured as the zero set of a low-degree
polynomial using the evaluation map.

Lemma 1.13. For d ∈ N0 and field F, if E ⊆ Fn is a set such that |E| <
(
n+d
n

)
, then there exists a

non-zero polynomial P ∈ Polyd(F) such that E ⊆ Z(P ).

Proof. Consider the evaluation map ϕE from Definition 1.12. By the rank-nullity theorem, dim(kerϕE) =

dim(Polyd(F)) − dim(ImϕE) ≥ dim(Polyd(F)) − dim(FE) =
(
n+d
n

)
− |E| > 0 using Lemma 1.10 and

Lemma 1.11. Thus, there is a non-trivial element in kerϕE which is what we wanted.

1.3 The Schwartz-Zippel Lemma

We briefly pause our study of vector spaces of polynomials in order to prove the Schwartz-Zippel Lemma.
The Schwartz-Zippel Lemma effectively shows that, when working in a finite field, the degree of a
non-zero polynomial controls the number of roots of the polynomial. Thus, at least when working over
finite fields, zero sets of low-degree polynomials are combinatorially simpler which is in parallel with the
1 variable case. Before we prove the Schwartz-Zippel Lemma, we first need one more crucial Lemma,
Lemma 1.14, which, in some sense, says that as long as the degree of a non-zero polynomial over a
finite field is not too large, it is not zero everywhere.
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Lemma 1.14. For a finite field F and a non-zero polynomial P ∈ F[x1, ..., xn] such that deg(P ) < |F|,
there exists a ∈ Fn such that P (a) ̸= 0.

Proof. We will prove this by induction on k. For k = 1, using Lemma 1.7, suppose P (a) = 0 for all a ∈ F,
then x1(x1 − 1)...(x1 − |F|+ 1) divides P (x1) meaning deg(P ) ≥ |F|. For our induction step, assume
the statement holds for n = k and suppose we have non-zero P ∈ F[x1, ..., xk, xk+1] with degree at most
F− 1. If P (x1, ..., xk, r) ̸= 0 for some r ∈ F, since P (x1, ..., xk, r) is simply a non-zero polynomial in k

variables with degree at most F− 1, there is a (b1, ..., bk) ∈ Fn such that P (b1, ..., bk, r) ̸= 0 so now just
set a = (b1, ..., bk, r). Else, setting R = F[x1, ..., xk] we can treat P as a polynomial in xk+1 in R[xk+1].
Thus, applying Lemma 1.7, xk+1(xk+1 − 1)...(xk+1 − |F|+ 1) divides P meaning deg(P ) ≥ |F| which is
a contradiction since we assumed P had degree at most F− 1.

Although we will not need it for the Finite Field Kakeya Conjecture, the Schwartz-Zippel Lemma,
which we state in its commonly used form below, can be seen as the generalisation of Lemma 1.14.
Indeed we will use Lemma 1.14 as a key building block in our proof of the Schwartz-Zippel Lemma
with Lemma 1.14 also following as a corollary.

Lemma 1.15 (Schwartz-Zippel Lemma). For a finite field F and a non-zero polynomial P ∈ F[x1, ..., xn],
|Z(P )| ≤ deg(P )|F|n−1.

We provide a relatively short proof of the Schwartz-Zippel Lemma by Moshkovitz in [Mos10].

Proof. Let d = deg(P ), then we can write P = Pd + P<d where Pd is the sum of all the degree d

monomials in P . We can assume d < |F| otherwise the result follows trivially. Given a line in Fn, say
{w + tx|t ∈ F} for some w, x ∈ Fn, we have that the coefficient in front of the td term in P (w + tx) is
Pd(x). However, by Lemma 1.14, since Pd ̸≡ 0 and deg(Pd) = d < |F|, there exists an a ∈ Fn such that
Pd(a) ̸= 0. In addition, we can choose a to be non-zero since if d > 0, Pd(0) = 0 and if d = 0, then
Pd ≡ P is non-zero and constant.

For a non-zero vector v ∈ Fn, the points of Fn can be partitioned into the set of parallel lines
with direction v, denoted Lv := {l(v, c) : c ∈ Fn} where l(v, c) = {vt+ c : t ∈ F}, thus |Lv| = |F|n−1

since each line has F points on it. We claim that none of the lines in La intersect Z(P ) in more than
d places. Indeed, for some w ∈ Fn, if P (w + ta) = 0 for more than d different values of t ∈ F, then
P (w + ta) is the zero polynomial by Corollary 1.8. Furthermore, the coefficient of td in P (w + ta) is
Pd(a), implying Pd(a) = 0 which is a contradiction. Thus, we have a bound on Z(P ) which is precisely
that Z(P ) ≤ d|F|n−1.

The Schwartz-Zippel Lemma was originally a result from the theory of probabilistic polynomial
identity testing, given as the following Corollary.

Corollary 1.16. For a finite field F and non-zero f ∈ F[x1, ..., xn], then P[f(r1, ..., rn) = 0] ≤ deg(f)
|F|

where r1, ..., rn are random elements of F selected uniformly and independently.

Following Williams’ notes from [Wil21], the key problem that identity testing deals with is this:
given two polynomials p1, p2 where we don’t know the coefficients of either polynomial but can evaluate
them at any point we’d like, what is the best way of testing if p1 ≡ p2 ie. the two polynomials have the
same coefficients?

Clearly this is equivalent to asking when a polynomial p := p1 − p2 is the zero polynomial, and here
we can use Corollary 1.16. Plug a random element of Fn into p. If the output is non-zero, then p ̸≡ 0

and we are done. Otherwise, if the output is zero then by Corollary 1.16, the probability that p ≡ 0

7



is 1− deg(p)
|F| . Either by plugging in more random elements of Fn or evaluating the polynomials over a

larger finite field, we can make the probability of the output being 0 when p ̸≡ 0 as small as we’d like.

Perfect Matchings of Graphs

We demonstrate the value of the Schwartz-Zippel Lemma and Corollary 1.16 by showing its relevance
to perfect matchings of graph. Determining whether a graph has a perfect matching will hold particular
importance in Chapter 4 so it is well worth the detour to mention perfect matchings here.

Definition 1.17. A perfect matching of a graph G = (V (G), E(G)) is a subset of the edge set E(G)

such that every vertex in V (G) is connected to exactly one edge in the subset.

(a) (b) (c) (d)

Figure 1.2: Graph (b) is the only graph which has a perfect matching, indicated by red edges.

Note that any graph with an odd number of vertices will not have a perfect matching. But, given
a graph G with an even number of vertices, how can we tell when there is a perfect matching? The
answer lies in the polynomial given by the determinant of the Tutte matrix.

Definition 1.18. Given a graph G, where we enumerate the vertices V = {vi}i∈[n], we define the Tutte
matrix of the graph G to be A ∈ Mn(C[xij ]) for i, j ∈ [n] where

Ai j =


xij if (vi, vj) ∈ E and i < j,

−xji if (vi, vj) ∈ E and i > j,

0 otherwise.

The following Theorem was first proved by Tutte in 1947 in [Tut47]. We note that the determinant
of the Tutte matrix will be a polynomial and the determinant of the Tutte matrix being non-zero means
the polynomial is not identically zero.

Theorem 1.19. A graph G contains a perfect matching if and only if the Tutte matrix of G has
non-zero determinant.

So, given a graph G, we can check if G has a perfect matching by computing the determinant of its
corresponding Tutte matrix A and checking if it vanishes. However, by implementing Corollary 1.16
and using our observations from before, we can get a probabilistic estimate much more quickly. Since
det(A) has degree at most 2n, if we evaluate det(A) at a random point in F2n and the output is zero,
the probability that det(A) = 0 is at least 1 − 2n

|F| giving us an efficient but probabilistic method of
checking if G has a perfect matching. By increasing |F| we can make the above probability as small as
we’d like, however, this will likely be a trade-off with the time needed to evaluate the random point due
to doing calculations in a larger field.

A proof of Theorem 1.19 is given in Appendix A along with a further exploration of perfect matchings
and disjoint cycle covers of directed and undirected graphs.
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1.4 Finite Kakeya Sets

We now set the scene for Dvir’s proof of the Finite Field Kakeya Conjecture, which many argue was the
result that kicked off the acknowledgement of the so-called polynomial method, starting with a question
from geometry. The question was first asked by Japanese mathematician Soichi Kakeya in 1917: what
is the smallest set in the plane in which one can rotate a needle around completely?1 These sets have
become known as Kakeya sets which in turn prompted the notion of the Besicovitch set, which boils
down the essence of the Kakeya set.

Figure 1.3: An example by [Gtg09] of a Kakeya set, constructed from "Perron trees". These were
described by Perron in [Per28] as a method of constructing arbitrarily ’small’ Kakeya sets.

Definition 1.20 (Besicovitch set). A Besicovitch set is a set of points in Euclidean space Rn (ie. n is
a positive integer) such that given any direction, there is a unit vector pointing in that direction starting
and ending at two points from our set.

For n = 2, the circle with radius equal to 1
2 is a Kakeya set and thus also a Besicovitch set.

However, we can do much better than this. It was shown in 1919 by Besicovitch in [Bes19] that there
are Besicovitch sets with arbitrarily small measure. However, there is still one conjecture from Elder’s
lecture notes, [Eld12], about the ’size’ of these sets where the notion of size we use is that of Hausdorff
dimension.

Conjecture 1.21 (Kakeya Set Conjecture). Besicovitch sets in Rn have Hausdorff dimension greater
than n− ϵ for any ϵ > 0.

This, as it turns out is a very difficult problem, and so far we have only been able to prove it
completely for n = 1 or n = 2. When faced with a tough problem, it is often productive to attempt a
simpler version. In the case of Kakeya Set Conjecture, Wolff reposed the Kakeya set conjecture over
finite fields in [Wol99], thus avoiding the technicalities of dealing with the Hausdorff dimension and
moving the problem into a more combinatorial setting.

1According to [Juk11], Kakeya likened this to a samurai turning a lance round in a small toilet.
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Finite Field Kakeya Conjecture

Definition 1.22 (Finite Kakeya set). For n ∈ N and F a finite field, a finite Kakeya set is a set of
points in Fn such that the set contains a line in every direction.

We can now state and prove the Finite Field Kakeya conjecture which gives a lower bound on the
size of finite Kakeya sets. It was originally proved in 2008 by Dvir in [Dvi08] in a surprisingly short
proof using only basic techniques from the polynomial method, all of which we have covered already. In
the following proof, we incorporate lines of argument from [Tao08] and [She22].

Theorem 1.23 (Finite Field Kakeya Conjecture). If E is a finite Kakeya set in Fn,

|E| ≥
(
|F| − 1 + n

n

)
.

Proof. Suppose E is a finite Kakeya set where |E| <
(|F|−1+n

n

)
, seeking a contradiction. Then, by

Lemma 1.13, there exists a non-zero polynomial P ∈ Poly|F|−1(F) such that P vanishes on E. Then
we can write P = Pd + P<d where 0 < d < |F| is the degree of P , noting d ̸= 0 since P vanishes on a
non-empty set, and Pd is the sum of all the degree d monomials in P .

Given any direction v ∈ Fn\{0}, there is a u ∈ Fn such that {u + tv : t ∈ F} ⊆ E and thus we
can define Q(t) := P (u + tv) = 0 for all t ∈ F. Since deg(Q) < |F| and Q vanishes at |F| different
points, then using Corollary 1.8, Q is the zero polynomial. In particular, the coefficient in front of
td, which is Pd(v), is zero for all non-zero vectors v ∈ Fn. Finally, noting Pd(0) = 0 since d ̸= 0 then
Pd(v) = 0 ∀v ∈ Fn and deg(Pd) = d < F so, using Lemma 1.14, Pd is also the zero polynomial. However,
this contradicts the fact that P had degree d.

Corollary 1.24. Every finite Kakeya set in Fn has at least 1
n! |F|

n elements. So, for any vector space
of dimension n over a finite field, a finite Kakeya set takes up at least a fixed proportion of the available
space.

Proof. We have
(
k+n
n

)
= (k+n)!

n!k! = 1
n!(k + n)(k + n− 1)...(k + 1) ≥ 1

n!(k + 1)n. For a Kakeya set E, then
|E| ≥

(|F|−1+n
n

)
≥ 1

n! |F|
n.

This bound was improved in 2013 in [Dvi+13] using the method of multiplicities, another facet of
the polynomial method, covered in [Tao14], which we will not go into here.

Finite Kakeya Sets in 2 Dimensions

Using Theorem 1.23, we know that the size of any finite Kakeya set over F2 is at least
(|F|+1

2

)
=

1
2(|F|+ 1)|F| so let us now try to find finite Kakeya sets which are minimal in size.

Notation 1.25. For m, c ∈ F let l(m, c) and l(∞, a) denote the set of points on the line y = mx+ c

and the line x = a in F2 respectively.
Since we are trying to find minimal finite Kakeya sets and we know that a finite Kakeya set E

contains a line in every direction, for some cm ∈ F, we can always write

E =
⋃

m∈F∪{∞}

l(m, cm).

Finally, for P ∈ F2, we let mP := |{m ∈ F ∪ {∞} : P ∈ l(m, cm)}|.
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We now present a formula, called the Incidence formula by Faber in [Fab07], which can be shown
by inclusion-exclusion, however, we don’t prove it here.

Theorem 1.26 (Incidence formula). For E a finite Kakeya set with mP defined as above,

|E| = (|F|+ 1)|F|
2

+
∑
P∈F2

(mP − 1)(mP − 2)

2

Guided by this formula and by [Fab07], let us now construct a Kakeya set which minimizes∑
P∈F2

(mP−1)(mP−2)
2 . We claim that the finite Kakeya set

E = l(∞, 0) ∪
⋃
m∈F

l(m,−m2). (1.1)

does so. Indeed, since l(i,−i2) ∩ l(j,−j2) = {(i+ j, ij)} for distinct i, j ∈ F then l(i,−i2) ∩ l(j,−j2) ∩
l(k,−k2) = ∅ for distinct i, j, k ∈ F. So, if P ̸∈ l(∞, 0), then mP ≤ 2 and clearly mP ≤ 3 for all P ∈ F2.

Now assume |F| is even ie. F = F2[θ] for some algebraic integer θ. Thus, for any i ∈ F, i = −i, and
so, for distinct i, j ∈ F, l(i,−i2) ∩ l(j,−j2) ∩ l(∞, 0) = ∅. So mP ≤ 2 for all P ∈ F2 and thus E hits
the lower bound we found in Theorem 1.23 using the Incidence Formula, Theorem 1.26.

On the other hand if |F| is odd, then, for i ∈ F×, i ̸= −i and thus we have l(i,−i2) ∩ l(−i,−i2) ∩
l(∞, 0) = {(0,−i2)}. Thus, we have mP = 3 if and only if P = (0,−i2). In F, there are precisely |F|−1

2

squares and thus, using the Incidence Formula, Theorem 1.26, we have

|E| = (|F|+ 1)|F|
2

+
|F| − 1

2
.

Faber conjectured, but was not able to prove, that this was the smallest a finite Kakeya set could be
in F2 for |F| odd. However, a year later in [BM08], it was shown that this is, in fact, the lower bound
for the size of a Kakeya set in F2 for |F| odd.

F = Z/3Z ∼= F3

|E| = 7

0

0

1

2

1 2

F = F2[θ] ∼= F4

|E| = 10

0

0

1

θ

θ + 1

1 θ θ + 1

F = Z/5Z ∼= F5

|E| = 17

0

0

1

2

3

4

1 2 3 4

Figure 1.4: Examples of minimal finite Kakeya sets using the explicit construction in Equation 1.1 over
the fields: F3

∼= Z/3Z, F4
∼= F2[θ] where θ2 + θ + 1 = 0 and F5

∼= Z/5Z.
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Chapter 2

The Croot-Lev-Pach Lemma

We now move from one version of the modern polynomial method, Dvir’s proof of the Finite Field
Kakeya Conjecture, to another, namely the proof of the cap set bound. Although this bound was
proved independently by Ellenberg and Gijswijt who co-authored [EG16], both proofs were along the
same lines, relying on what has become known as the Croot-Lev-Pach Lemma. This Lemma was first
demonstrated in Croot, Lev and Pach’s paper, [CLP17], where they gave a new upper bound for the
size sets with no 3-term progressions in Zn

4 and has been the main ingredient in a range results from the
s-distance sets in [PP19] to results about the bounds on matrix multiplication speed as demonstrated
in [Bla+17]. In 2016, Terence Tao made the amazing connection between the Croot-Lev-Pach Lemma
and the slice rank of k-tensors which allowed him to symmetrise Ellenberg and Gijswijt’s arguments in
[Tao16]. Before we introduce k-tensors and slice rank which we use to prove results about sunflowers
and cap sets, we prove an upper bound on the size of s-distance sets, the proof of which uses results
about vector spaces of polynomials which we proved in Chapter 1 as well as cutting directly to the
heart of the Croot-Lev-Pach Lemma.

2.1 s-distance Sets

In Section 1.1, we studied maximal equidistant sets and noted in Example 1.5 that in the plane we
could draw 4 points with only 2 distinct distances between pairs of points. But could we have drawn
more? We now generalise the notion of equidistant sets to that of s-distance sets where we allow s

distinct distances between pairs of points.

Definition 2.1. For s ∈ N, an s-distance set in a metric space M is a subset A ⊆ M where, letting
∆ := {∥a− b∥ : a, b ∈ A, a ̸= b}, |∆| = s.

4 points ✓ 5 points ✓ 6 points ✗

Figure 2.1: Sets of points in R2 marked as to whether they are 2-distance sets or not.
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We begin by examining the case of 2-distance sets with some examples shown in Figure 2.1. In
order to warm up for the proof of the bound for general s, we first prove an upper bound on the size of
2-distance sets, first shown by Blokhuis in [Blo84] which uses techniques about polynomials in vector
spaces reminiscent of Chapter 1.

Theorem 2.2. Every 2-distance set in Rd with the Euclidean metric has at most
(
d+2
2

)
elements.

Proof. Let A ⊆ Rd be a 2-distance set with pairwise distances ∆ = {d1, d2}. It is natural to associate
with each point a ∈ A a polynomial fa given by

fa(x) =

(
1

d21
∥x− a∥2 − 1

)(
1

d22
∥x− a∥2 − 1

)
where for a, b ∈ A, fa(b) =

1 if a = b,

0 if a ̸= b.

Working over the vector space of functions, V := {f : Rd → R}, we notice that for all a ∈ A,
∥x− a∥2 ∈ ⟨∥x∥2, xi, 1 : i ∈ [d]⟩ ie. ∥x− a∥2 can be written as a linear combination of ∥x∥2, xi for
i ∈ [d] and 1. Thus, ⟨fa(x), xi, 1 : a ∈ A, i ∈ [d]⟩ ⊆ ⟨∥x∥4, ∥x∥2xj , xjxk, xj , 1 : j, k ∈ [d]⟩ which is a
subspace of V of dimension at most 1 + d+ (

(
d
2

)
+ d) + d+ 1 =

(
d+2
2

)
+ d+ 1. We further claim that

{fa(x), xi, 1 : a ∈ A, i ∈ [d]} is a linearly independent set in V which would imply |A|+d+1 ≤
(
d+2
2

)
+d+1

so we are done. Indeed, suppose that for all x ∈ Rd∑
a∈A

cafa(x) +
∑
i∈[d]

cixi + c = 0 for some ca, ci, c ∈ R.

Plugging in b ∈ A, we have the identity cb +
∑

i∈[d] cibi + c = 0 for all b ∈ A. Furthermore, plugging in
tei for t ∈ R and i ∈ [d], we have for all t ∈ R

0 =
∑
a∈A

cafa(tei) + cit+ c =
∑
a∈A

ca

(
1

d21
∥tei − a∥2 − 1

)(
1

d22
∥tei − a∥2 − 1

)
+ cit+ c

=
∑
a∈A

ca

(
1

d21
t2 − 2ai

d21
t+

1

d21
∥a∥2 − 1

)(
1

d22
t2 − 2ai

d22
t+

1

d22
∥a∥2 − 1

)
+ cit+ c

=
1

d21d
2
2

(∑
a∈A

ca

)
t4 − 2

d21d
2
2

(∑
a∈A

caai

)
t3 + lower order terms

Treating this as a polynomial in R[t] which vanishes on all of R, by Corollary 1.8, it is the zero
polynomial and thus

∑
a∈A ca = 0 and

∑
a∈A caai = 0 for all i ∈ [d] since d1 and d2 are both non-zero.

Now, multiplying
∑

a∈A caai = 0 by −ci and summing over i ∈ [d], we have

0 =
∑
i∈[d]

−ci

(∑
a∈A

caai

)
=
∑
a∈A

−ca

∑
i∈[d]

ciai

 =
∑
a∈A

−ca(−ca − c) =
∑
a∈A

c2a + c
∑
a∈A

ca =
∑
a∈A

c2a

using the fact that cb +
∑

i∈[d] cibi + c = 0 for all b ∈ A and
∑

a∈A ca = 0. Since ca ∈ R, then ca = 0 for
all a ∈ A and thus we have cit+ c = 0 for all i ∈ [d]. Again, treating these as polynomials in R[t] which
vanish on R, by Corollary 1.8, they are all the zero polynomial so c = 0 and ci = 0 for all i ∈ [d] along
with ca = 0 for all a ∈ A.

Along similar lines to when we constructed equidistant sets, we can construct large explicit 2-distance
sets in the d-dimensional hyperplane x1 + x2 + ...+ xd+1 = 2 in Rd+1 which is isomorphic to Rd. We
let our 2-distance set be given by A = {ei + ej : i, j ∈ [d+ 1], i ̸= j} where ∆ = {

√
2, 2}. Indeed, for

i, j, k, l ∈ [d+ 1] all distinct, ∥ei + ej − (ei + ek)∥ = ∥ej − ek∥ =
√
2 and ∥ei + ej − (ek + el)∥ =

√
4 = 2.

So, |A| =
(
d+1
2

)
which gives us a lower bound for the maximal size of 2-distance sets.
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Table 2.1: This table contains the sizes of maximal 2-distance sets in up to 8 dimensions along with the
number of such sets up to similarity ie. up to isometry and scaling.

Dimension d 1 2 3 4 5 6 7 8(
d+2
2

)
3 6 10 15 21 28 36 45

Size of maximal 2-distance set in Rd 3 5 6 10 16 27 29 45(
d+1
2

)
1 3 6 10 15 21 28 36

# maximal 2-distance sets up to similarity 1 1 6 1 1 1 1 ≥ 1

Table 2.1 demonstrates how the size of a maximal 2-distance set in Rd fluctuates between
(
d+1
2

)
and(

d+1
2

)
meaning the 2-distance sets we just constructed give us a good lower bound, and in dimensions 3

and 4 they actually turn out to be maximal! It was Kelly, in [Kel47], who first proved that 5 points is
the best we can do in R2 and Erdős and Fishburn proved it was unique in [EF96] up to similarity. In
fact, all 2-distance sets in R2 and R3 had already been classified by Einhorn and Schoenberg in [ES66]
in 1966. For dimensions 4, 5 and 6, it was Seidel in [Sei95], who first conjectured the values given in the
table above but it was Lisoněk in [Lis97] who, in 1997, proved the sizes of maximal 2-distance sets in
Rd for 4 ≤ d ≤ 8 and proved uniqueness of these sets for 4 ≤ d ≤ 7, finding a set in R8 which hits the
upper bound of

(
8+2
2

)
= 45. In fact the construction in 8 dimensions just takes our explicit 2-distance

set embedded in the hyperplane x1 + x2 + ...+ x9 = 2 in R9 with 36 elements from before and adds 9

more points to get the 2-distance set with 45 points given by

A = {ei + ej : i, j ∈ [9], i ̸= j} ∪ {−ei +
1

3

∑
k∈[9]

ek : i ∈ [9]}

There are many avenues of research into 2-distance sets. One such avenue asks questions such as:
which 2-distance sets maximise the ratio between the pairwise distances? It is shown in [HP93] that
the 2-distance set which forms a pentagon, as shown in Figure 2.1, maximises this for all 2-distance
sets with 5 points with the golden ratio. It is also interesting to note that any simple graph can be
represented as a 2-distance set and Einhorn and Schoenberg sparked the use of this correspondence in
[ES66], which has branched into many other areas of research such as: what is the minimum number of
dimensions needed to construct a 2-distance set representing a given graph? Finally, spherical 2-distance
sets, as seen in [Mus09], are sets where the inner product of two different elements take precisely 2

values. Let’s now generalise to s-distance sets.

Theorem 2.3. The size of an s-distance set in Rd is at most
(
d+s
s

)
.

Theorem 2.3 demonstrates our current upper bound on s-distance sets which was given in [BBS83]
in a fairly technical paper. However, in [PP19], a much quicker and easier proof is given by introducing
a second variable which symmetrises the polynomial from the proof of Theorem 2.2 and gives us the
more general result which we state now. Attentive readers will notice the similarity between this bound
and the bound in Lemma 1.11, and this is no accident.

Proof. Let A be our s-distance set and let ∆ = {∥a − b∥ : a, b ∈ A, a ̸= b} so |∆| = s. Define the
polynomial P (x, y) :=

∏
d∈∆

(
1− 1

d2
∥x− y∥2

)
where deg(P ) ≤ 2s. Then, we can write P (x, y) as a

sum of monomials of the form cα,βx
αyβ for α, β ∈ Nd

0 where, since |α|+ |β| ≤ deg(P ) = 2s, then by
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the pigeonhole principle, min{|α|, |β|} ≤ s. In addition, notice that for a, b ∈ A

P (a, b) =

1 if a = b,

0 if a ̸= b.

Now recall that the vector space of functions RA = {f : A → R} has an inner product given by (f, g) :=∑
a∈A f(a)g(a). Using the evaluation map ϕA : Polys(R) → RA where ϕA(P ) : A → R, a 7→ P (a) from

Definition 1.12, then for f ∈ Im(ϕA)
⊥

(f, f) =
∑
a∈A

f(a)f(a) =
∑
a,b∈A

f(a)P (a, b)f(b) =
∑
a,b∈A

∑
α,β∈Nd

0

cα,β a
αbβf(a)f(b)

=
∑

α,β∈Nd
0

cα,β

(∑
a∈A

aαf(a)

)(∑
b∈A

bβf(b)

)
= 0

since min{|α|, |β|} ≤ s, implying that f = 0 . Thus, Im(ϕA) = RA and so,

|A| = dimRA = dim Im(ϕA) ≤ dimPolys(R) =
(
d+ s

s

)
using Lemma 1.11 and the fact that ϕA is a linear map,

This proof really is quite incredible, as there is almost nothing to it. It is even shorter than our
proof of the upper bound on the size of both equidistant sets and 2-distance sets, even though these
results follow as immediate corollaries to Theorem 2.3. The proof boils down to the pulling apart of the
inner product (f, f) into two parts, one of which must be zero meaning the inner product is zero. This
is, in some sense, the essence of the Croot-Lev-Pach Lemma which will show up in a similar fashion in
Tao’s slice rank Lemma. Thus, we will now introduce the machinery of k-tensors and slice rank and
then use those results to prove bounds, first conjectured by Erdős, on the size of sunflower free sets and
also on the size of maximal cap sets.

2.2 The Slice Rank Method

If we view square matrices as being ’2-dimensional’, we can view k-tensors as being the k-dimensional
analogues.

Definition 2.4. Let F be a field, k ∈ N and X a finite set. Then a k-tensor is a function T : Xk → F.
Furthermore, a k-tensor is diagonal if T is only non-zero when evaluated at k of the same element in
X ie. T (x1, ..., xk) ̸= 0 implies x1 = ... = xk.

It is important to note that there are no restrictions on the function defining a k-tensor in the same
way that matrices have no restrictions on their elements.

Example 2.5. As implied, a square matrix is simply a 2-tensor. For a matrix M ∈ Mn(F), then
TM : [n]2 → F, (i, j) 7→ Mij is the corresponding 2-tensor. In addition, M is diagonal if and only if TM

is diagonal since TM (i, j) = Mij ̸= 0 implies i = j.

It is important to note that the product of two k-tensors does not align with the standard notion of
matrix multiplication, instead aligning with the element-wise product of 2 matrices.

Definition 2.6. For k, l ∈ N, the product of a k-tensor T and an l-tensor S is a (k + l)-tensor TS

given by (TS)(x1, ...xk+l) = T (x1, ..., xk)S(xk+1, ..., xk+l).
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Now we have the basic notion of a k-tensor extending the notion of square matrices, we can now
generalise the notion of rank. However, there is not one agreed-upon definition for the rank of k-tensors
and we will need different notions of rank for k-tensors to solve different types of problems. Perhaps the
most intuitive type of k-tensor rank is that of slice rank.

Notation 2.7. For brevity, we denote x{i} := (x1, ..., xi−1, xi+1, ..., xk).

Definition 2.8. A k-tensor S is a slice if there exists a 1-tensor S1 and a (k − 1)-tensor Sk−1 such
that for some i ∈ [k],

S(x) = S1(xi)Sk−1(x
{i}).

Let T be a k-tensor. Then the slice rank of T , denoted srk(T ), is the smallest integer r such that T can
be written as the sum of r slices.

Example 2.9. Given a finite set X ⊆ R, take the 4-tensor S : X4 → R given by S(x1, x2, x3, x4) =

x1x2 − x2x3 + x2x
3
4. S is a slice since, if we define 1-tensor S1 : X → R, x2 7→ x2 and 3-tensor

S3 : X2 → R, (x1, x3, x4) 7→ x1 − x3 + x34, then S(x1, x2, x3) = x2(x1 − x3 + x34) = S1(x2)S3(x1, x3, x4).
Thus, srk(S) = 1 since any slice has slice rank 1.

Now, take the 3-tensor T : X3 → R given by T (x1, x2, x3) = x1x2+x1x3+x23. It is easy to check that
T is not a slice by trying to factor out a linear polynomial of each variable and coming to a contradiction.
However, we can write T (x1, x2, x3) = x1(x2 + x3) + x23 as the sum of two slices and thus srk(T ) = 2.

Figure 2.2: A visulisation of the 1-tensors R(y) = y + 1 in red and B(x) = x2 in blue (left) and their
product, the 2-tensor P (x, y) = R(y)B(x) = yx2 + y (right). Thus P (x, y) is a slice so srk(P ) = 1.

Remark 2.10. Let’s now compare the notion of the slice rank of a 2-tensor and the rank of the
corresponding matrix. Recalling some linear algebra, the rank of a matrix is the number of linearly
independent rows. Thus, a rank 1 matrix has rows which are all multiples of each other. Thus, we can
rewrite a rank r matrix as a sum of r rank 1 matrices, where all the rows in each of the rank 1 matrices
are multiples of one of the r linearly independent rows in our rank r matrix. In the other direction,
using that for two matrices A and B, rank(A+B) ≤ rank(A) + rank(B), then the rank of r − 1 rank
1 matrices is at most r − 1, so we need to sum at least r rank 1 matrices to get back to our rank r

matrix. Thus the rank of a matrix is the smallest integer r such that the matrix can be written as a
sum of r rank 1 matrices. Finally, we notice that a rank 1 matrix M ∈ Mn(F) can be written in the
form M = uvT for some u, v ∈ Fn and thus, the corresponding 2-tensor is a product of two 1-tensors
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given by TM (i, j) = Tu(i)Tv(j) where Tu, Tv : [n] → F given by Tu(i) = ui and Tv(j) = vj. Now it is
clear that the notions of slice rank for 2-tensors and rank of the corresponding matrix are identical so
slice rank is indeed a generalisation of the notion of rank for square matrices.

Now, we will prove two results which will provide the machinery for our later proofs.

Lemma 2.11. For a k-tensor T : Xk → F, srk(T ) ≤ |X|.

Proof. We can rewrite T (x1, ...., xk) =
∑

a∈X I{a}(x1)T (a, x2, ...xk).

It is a standard result in linear algebra that the rank of a diagonal matrix is equal to the number
of non-zero diagonal entries. In [Tao16], Tao proved that this result extends to diagonal k-tensors,
commonly referred to as the slice rank lemma which we now prove.

Lemma 2.12. [Slice rank lemma] For k ≥ 2, the slice rank of a diagonal k-tensor is equal to the
number of non-zero diagonal elements.

Proof. We induct on k, with base case k = 2. In Remark 2.10, we showed that, for 2-tensors, their slice
rank was equivalent to the rank of the corresponding matrix. Thus, since the rank of a diagonal matrix
is equal to the number of non-zero diagonal entries, it follows that the slice rank of a diagonal 2-tensor
is just equal to the number of non-zero diagonal elements.

For the induction step, assume the k − 1 case. Let T : Xk → F be our diagonal k-tensor and thus,
we can write T (x) =

∑
a∈X ca

∏
i∈[k] I{a}(xi) for some ca ∈ F. Letting A := {a ∈ X : ca ̸= 0},we then

have T (x) =
∑

a∈A ca
∏

i∈[k] I{a}(xi). It is now clear that srk(T ) ≤ |A| since
∏

i∈[k] I{a}(xi) are all slices.
Seeking a contradiction, assume srk(T ) < |A|, then, we can write T (x) =

∑
i∈[k]

∑
α∈Ii fi,α(xi)gi,α(x

{i})

for some indexing sets I1, ..., Ik where
∑

i∈[k] |Ik| < |A| and 1-tensors fi,α : A → F and (k − 1)-tensors
gi,α : Ak−1 → F. For 1-tensors f, g : A → F, we consider the subspace V orthogonal to all fk,α for all
α ∈ Ik, with respect to our bilinear form (f, g),

V := ⟨fk,α : α ∈ Ik⟩⊥ =

{
h : A → F :

∑
a∈A

h(a)fk,α(a) = 0 ∀α ∈ Ik

}
.

Since the space of 1-tensors has a basis {I{a}(x) : a ∈ A}, it has dimension |A|, and since dim⟨fk,α :

α ∈ Ik⟩ ≤ |Ik| then dimV ≥ |A| − |Ik|. Construct the dimV × |A| matrix with columns given by basis
vectors for V in the basis {I{a}(x) : a ∈ A}. This matrix has rank dimV so we can find |A| − dimV

linearly dependent rows and remove them leaving us with a full rank dimV × dimV matrix, with rows
indexed by elements a ∈ A′ for some subset A′ ⊆ A. Thus ⟨I{a}(x) : a ∈ A′⟩ is contained in the image
of our original dimV × |A| matrix and thus there exists a 1-tensor h ∈ V which is non-zero on A′ where
|A′| = dimV ≥ |A| − |Ik|. Multiplying T by h(xk) and summing over xk ∈ A,∑

xk∈A
T (x)h(xk) =

∑
xk∈A

∑
i∈[k]

∑
α∈Ii

fi,α(xi)h(xk)gi,α(x
{i})

=
∑

i∈[k−1]

∑
α∈Ii

∑
xk∈A

fi,α(xi)h(xk)gi,α(x
{i}) +

∑
α∈Ik

∑
xk∈A

fk,α(xk)h(xk)

 gk,α(x
{k}) (2.1)

=
∑

i∈[k−1]

∑
α∈Ii

∑
xk∈A

fi,α(xi)h(xk)gi,α(x
{i}) =

∑
i∈[k−1]

∑
α∈Ii

fi,α(xi)ĝi,α(x
{i})

where ĝi,α(x1, ..., xi−1, xi+1, ..., xk−1) =
∑

xk∈A gi,α(x
{i})h(xk). This is a double sum of slices and thus

has slice rank at most
∑

i∈[k−1] |Ik| < |A| − |Ik|. However, we can also write

∑
xk∈A

T (x)h(xk) =
∑
a∈A

ca

∑
xk∈A

h(xk)I{a}(xk)

 ∏
i∈[k−1]

I{a}(xi) =
∑
a∈A

cah(a)
∏

i∈[k−1]

I{a}(xi)
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which is a diagonal (k − 1)-tensor where cah(a) is non-zero for all a ∈ A′. Thus, by our induction
hypothesis, we know that it has slice rank at least |A′| ≥ |A|−|Ik| and thus we have a contradiction.

Although we have now reformulated things in terms of k-tensors and slice rank, the essence of
the slice rank lemma, Lemma 2.12, is the same technique from the Croot-Lev-Pach Lemma which we
saw when we were dealing with s-distance sets in Section 2.1. In the proof of the slice rank lemma,
it occurred in Equation 2.1 when we started pulling apart our big (k − 1)-tensor and then using our
orthogonality condition to set it equal to zero. The slice rank lemma will act as the crux of the proofs
in the following two sections when we want to give bounds on the size of sets using the properties of
elements of those sets. The utility of the slice rank lemma comes from defining a well-picked k-tensor T
say on the set X, the size of which we want to bound ie. T : X → F for some field F. We then show
that T is diagonal and is non-zero along its diagonal so we can invoke the slice rank lemma to show
|X| = srk(T ). Now, we can simply split T into a sum of slices and give a bound on srk(T ) and thus |X|.

In addition to the standard rank and slice rank, there is also the concept of partition rank. In fact,
identically to slice rank, the partition rank of a diagonal k-tensor is equal to the number of non-zero
diagonal elements. As we will see in the case of slice rank in Sections 2.3 and Section 2.4, this is the key
fact that allows us to leverage combinatorial results and this is also used in the case of partition rank
by Naslund in [Nas20] where it is used to give an upper bound on the size of sets in Fn

q not containing
corners.

2.3 Sunflowers

It is finally time to implement the theory we have been cooking up in Section 2.2, in order to prove an
upper bound on the size of sunflower free sets, first shown in 2017 in Naslund and Sawin’s paper [NS17].

Definition 2.13. A collection of k sets, {Si ⊆ [n] : i ∈ [k]}, is a k-sunflower if the intersection of any
two distinct sets from the collection is the same set ie. Si ∩ Sj = S ∀ i, j ∈ [k] for some set S ⊆ [n].
Furthermore, a collection of sets F is called k-sunflower free if F doesn’t contain any k-sunflowers and
if F doesn’t contain any 3-sunflowers then F is just called sunflower free.

3
4

5

1

7
9

8

6
2

7
1

5

2
86

9

3

Figure 2.3: A visualisation of a k-sunflower and a sunflower free collection where n = 9, k = 5.

The concept of a k-sunflower goes back to Erdős who proposed the following two conjectures
alongside Rado in [ER60] and Szemerédi in [ES78].

Conjecture 2.14 (Erdős-Rado sunflower conjecture). For k ≥ 3 and F a k-sunflower free collection
of sets all of size n, then |F| ≤ Cn

k for some Ck > 0 depending only on k.
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Conjecture 2.15 (Erdős-Szemerédi sunflower conjecture). For k ≥ 3 and F a k-sunflower free
collection of subsets of [n], then |F| ≤ cnk for some ck < 2 depending only on k.

Both conjectures are still unsolved as of today however progress on the Erdős-Rado sunflower
conjecture has recently been made in [Alw+20]. In addition, Theorem 2.16, which we prove now,
following Naslund and Sawin’s proof in [NS17], is the k = 3 case of the Erdős-Szemerédi Sunflower
Conjecture.

Theorem 2.16. If F is a sunflower free collection of subsets of [n], then |F| ≤ 3(n + 1)
(

3
3√4

)n
so

|F| = O(1.89n).

Proof. Define Sj := {xS ∈ Rn : S ∈ F , |S| = j} ⊆ Rn using characteristic vector notation as in
Definition 1.2. Then define the 3-tensor T : S3

j → R, where

T (x, y, z) =

n∏
i=1

(2− (x+ y + z)i)

and we claim that T is a diagonal 3-tensor. Indeed, since F is a sunflower free set, then for any 3 distinct
sets A,B,C ∈ F , ∃ i ∈ [n] such that (xA + xB + xC)i = 2. Thus, for distinct xA, xB, xC ∈ Sj ⊆ F ,
∃ i ∈ [n] such that 2− (xA + xB + xC)i = 0 so T (xA, xB, xC) = 0. In addition, for distinct A,B ∈ Sj ,
since |A| = |B|, then A ̸⊆ B so ∃ i ∈ [n] such that (xA+xA+xB)i = 2 and as before, T (xA, xA, xB) = 0.

We can now apply Lemma 2.12 to T and since, for any xA ∈ Sj , T (xA, xA, xA) = (−1)j2n−j ̸= 0,
then |Sj | = srk(T ). All we need to do now is find an upper bound on srk(T ) by decomposing T (x, y, z)

into slices.
Denoting xI :=

∏
i∈I xi for some I ⊆ [n], we can expand T as

T (x, y, z) =
∑

I⊔J⊔K⊔L=[n]

(−1)|I|+|J |+|K|2|L|xIyJzK

which, as a polynomial, clearly has degree at most n. By the pigeonhole principle, given any monomial
xIyJzK in T as above, one of I, J,K has size at most n

3 . Thus, there are constants cIJKL, dIJKL, eIJKL ∈
R, such that we can further decompose

T (x, y, z) =
∑

I⊔J⊔K⊔L=[n]
|I|≤n

3

cIJKLx
IyJzK +

∑
I⊔J⊔K⊔L=[n]

|J |≤n
3

dIJKLx
IyJzK +

∑
I⊔J⊔K⊔L=[n]

|K|≤n
3

eIJKLx
IyJzK

=
∑
I⊆[n]
|I|≤n

3

xIf(y, z) +
∑
J⊆[n]
|J |≤n

3

yJg(x, z) +
∑

K⊆[n]
|K|≤n

3

zKh(x, y)

for some 2-tensors f, g, h : S2
j → R. However, we now see that each term in each sum is a slice since, for

I ⊆ [n] then xI =
∏

i∈I xi is still a 1-tensor and thus

srk(T ) ≤ 3
∑
I⊆[n]
|I|≤n

3

1 = 3

n
3∑

i=0

(
n

i

)
so |F| =

n∑
j=0

|Sj | ≤ 3(n+ 1)

n
3∑

i=0

(
n

i

)

To find an explicit constant, let m(t) = 1+t
3√t

defined for t ∈ (0, 1). Then, ∀t ∈ (0, 1),

(m(t))n = t−
n
3 (1 + t)n = t−

n
3

n∑
i=0

(
n

i

)
ti =

n∑
i=0

(
n

i

)
ti−

n
3 >

n
3∑

i=0

(
n

i

)
ti−

n
3 ≥

n
3∑

i=0

(
n

i

)

since ti−
n
3 ≥ 1 when t ∈ (0, 1) and i ≤ n

3 . m(12) =
3
3√4

, so |F| ≤ 3(n+ 1)
(

3
3√4

)n
and 3

3√4
< 1.89.
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2.4 SET®

Figure 2.4: The 4 properties of cards in
SET with examples, taken from [Aus16].

The game of SET is an easy-to-learn card game where players
study a selection of cards and have to try and form ’sets’
of 3 cards. Each card has 1 out of 3 possibilities for each of
the 4 properties; colour, number, shape and shading. Since
each card is unique, the deck consists of 34 = 81 cards.
3 cards are said to form a ’set’ if, for all 4 properties sepa-
rately, the cards either all share the same feature or all have
distinct features. Equivalently, for any property, a ’set’ can
not have two cards with the same feature and the third, a
different feature from the other two.

A game of SET begins with the dealer dealing out 12
cards, at which point the players have to start frantically
trying to make ’sets’, each of which earns them a point. This
begs the question: can we guarantee that there will always
be a ’set’ having dealt any 12 cards from the deck? The rules
of the game luckily cover for this by stating that if there are
no ’sets’ the dealer keeps dealing until one appears. So, in
theory, how many cards would the dealer have to deal to
guarantee a ’set’ exists?

Figure 2.5: A ’set’ in the
game SET, from [Mar21].

As is often the case in maths, this question had already been answered
in 1970 by Pellegrino in [Pel70] before the game of SET had even been
invented by geneticist Marsha Falco in 1974. Pellegrino proved that, as
long as the dealer deals 21 cards, there is guaranteed to be a ’set’. Using
a program from his repository, [Knu], Knuth calculated there are 682344
’set’-less hands of 20 cards (a minute percentage of the possible number
of hands of 20 cards). However, what if we added another property to the
cards with 3 distinct choices ie. each card now has a background from a

choice of 3 backgrounds? We could then create a deck with 35 = 243 cards, but now would not know
how many cards the dealer would need to deal to guarantee a ’set’ where we extend the definition of a
’set’ to include this extra property?

We can restate the game and its infinitely-many extensions in mathematical terms by treating each
card as an element of the vector space Fn

3 for n ∈ N with each dimension corresponding to a property
of the cards. Note that for x, y, z ∈ F3 then x+ y + z = 0 ⇔ x = y = z or x, y, z are all distinct. Thus
a, b, c ∈ Fn

3 form a ’set’ ⇔ ai + bi + ci = 0, ∀ i ∈ [n] ⇔ a+ b+ c = 0.

Definition 2.17. A cap set is a subset A ⊆ Fn
3 such that, for any distinct a, b, c ∈ A, a+ b+ c ̸= 0.

Maximal cap sets have been verified manually up to n = 5, constructed in [Ede+02]. Upper bounds
are given for 6 ≤ n ≤ 10 in [DM03] and a 6-cap of size 112 is constructed in [CF94], seen in Table 2.2.

n 1 2 3 4 5 6 7 8 9 10
size of maximal cap set 2 4 9 20 45 112 ≤ ≤ 114 ≤ 291 ≤ 771 ≤ 2070 ≤ 5619

Table 2.2: A table showing the known sizes of maximal cap sets in dimensions 1 through 10.
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The result that brought cap sets, and, indeed, the polynomial method, to the attention of many,
and which we state and prove now, was the bound on maximal cap sets proved in [EG16], coauthored
by Ellenberg and Gijswijt. The crux of their argument relies on the Croot-Lev-Pach Lemma, and it was
only after [EG16] was published that Tao formulated the slice rank lemma and rewrote the proof of
the bound in terms of k-tensors in [Tao16]. Similar to our proof of the bound on the size of sunflower
free sets, having put in the groundwork by proving the slice rank lemma, the result falls out defining a
3-tensor on our cap set and then finding an upper bound on its slice rank by decomposing it into slices.

Theorem 2.18. If A ⊆ Fn
3 is a cap set, then |A| ≤ 3(2.76)n ie. |A| = O(2.76n).

Proof. We start by defining a 3-tensor T : A3 → F3 with a very similar form to the one we constructed
in the sunflower case, where

T (x, y, z) =
∏
i∈[n]

(1− (xi + yi + zi)
2)

and we claim that T is diagonal. Indeed, since A is a cap set, then for distinct a, b, c ∈ A, ∃ i such that
ai + bi + ci ̸= 0. Using that for non-zero x ∈ F3 then 1 − x2 = 0, we have T (a, b, c) = 0 for distinct
a, b, c ∈ A. In addition, similar logic holds assuming a = b ̸= c, since then 2b+ c ≠ 0 so a+ b+ c ̸= 0.
Finally T (a, a, a) = 1 and so it turns out that T is the ’identity’ 3-tensor on A in some sense. However,
it is enough that it is non-zero along its diagonal since it follows by Lemma 2.12 that |A| = srk(T ). We
now find an upper bound on the slice rank of T in a similar way to before.

As a polynomial, T clearly has degree at most 2n. For some cαβγ ∈ F3, we can expand T as

T (x, y, z) =
∑

α,β,γ∈{0,1,2}n
cαβγx

αyβzγ

so by the pigeonhole principle, given any monomial xαyβzγ in T as above, one of |α|, |β|, |γ| has size at
most 2n

3 . Thus ∃ cαβγ , dαβγ , eαβγ ∈ F3, such that we can further decompose

T (x, y, z) =
∑

α,β,γ∈{0,1,2}n
|α|≤ 2n

3

cαβγx
αyβzγ +

∑
α,β,γ∈{0,1,2}n

|β|≤ 2n
3

dαβγx
αyβzγ +

∑
α,β,γ∈{0,1,2}n

|γ|≤ 2n
3

eαβγx
αyβzγ

=
∑

α∈{0,1,2}n
|α|≤ 2n

3

xαf(y, z) +
∑

β∈{0,1,2}n
|β|≤ 2n

3

yβg(x, z) +
∑

γ∈{0,1,2}n
|γ|≤ 2n

3

zγh(x, y)

for some 2-tensors f, g, h : A2 → F3. However, we now see that each term in each sum is a slice since
for α ∈ {0, 1, 2}n, then xα =

∏
i∈[n] x

αi
i is still a 1-tensor and thus

srk(T ) ≤ 3
∑

α∈{0,1,2}n
|α|≤ 2n

3

1 = 3
∑

i,j,k∈N0
i+j+k=n
j+2k≤ 2n

3

n!

i!j!k!

by treating i, j, k as the number of 0’s, 1’s, 2’s respectively that α has as coordinates.
To find an explicit constant, let m(t) = 1+t+t2

3√
t2

defined for t ∈ (0, 1). Then, ∀t ∈ (0, 1),

(m(t))n = t−
2n
3 (1 + t+ t2)n = t−

2n
3

∑
i,j,k∈N0
i+j+k=n

n!

i!j!k!
tj+2k =

∑
i,j,k∈N0
i+j+k=n

n!

i!j!k!
tj+2k− 2n

3

≥
∑

i,j,k∈N0
i+j+k=n
j+2k≤ 2n

3

n!

i!j!k!
tj+2k− 2n

3 ≥
∑

i,j,k∈N0
i+j+k=n
j+2k≤ 2n

3

n!

i!j!k!

since tj+2k− 2n
3 ≥ 1 when t ∈ (0, 1) and j + 2k ≤ 2n

3 . m(
√
33−1
8 ) < 2.76, so |A| = srk(T ) ≤ 3(2.76)n.
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Chapter 3

Combinatorial Nullstellensatz

The Combinatorial Nullstellensatz, closely related to Hilbert’s famous Nullstellensatz, is one of the
most powerful and versatile tools in the polynomial method’s arsenal (Nullstellensatz is German for
"theorem about zero points") and is widely used in both extremal and existence problems. It is unique
from the polynomial methods we have been studying so far in Chapters 1 and 2, as it does not require
theory about vector spaces or rank, just the algebraic information contained in the polynomial. The
Combinatorial Nullstellenstaz was first formulated by Alon and Tarsi in 1989 in [AT89] and later
developed by Alon, Nathanson and Rusza in 1996 in [ANR96]. Then, in 1999, it was reformulated a
final time by Alon in [Alo99], where he used it to provide deceptively short proofs for a range of results
from combinatorics, number theory and graph theory, some of which we explore now.

3.1 Chevalley-Warning Theorem

Before we prove the Chevalley-Warning Theorem, we need the following Lemma from Section 9.4 of
[TV06], which incorporates a useful technique from the polynomial method. This technique relies on
the simple observation that, for a finite field F, a polynomial P ∈ F[t] and a bijection ϕ : F → F, then∑

a∈F P (a) =
∑

a∈F P (ϕ(a)). Usually we will take ϕ to be the map t 7→ st for some s ∈ F×.

Lemma 3.1. Let F be a finite field and n ∈ N. For some t = (t1, ..., tn) ∈ Nn
0 such that ∃ i ∈ [n] where

ti < |F | − 1, then
∑

x∈Fn xt = 0.

Proof. Clearly
∑

x∈Fn xt =
(∑

x∈Fn−1 x
t1
1 ...x

ti−1

i−1 x
ti+1

i+1 ...x
tn
n

) (∑
xi∈F x

ti
i

)
where 0 ≤ ti < |F | − 1 . If

ti = 0, then
∑

xi∈F x
ti
i = |F | = 0 and we are done. Now, let ti > 0 and ω be a primitive (|F| − 1)th

root of unity ie. ⟨ω⟩ = F× and consider the map ϕ : F → F, a 7→ ωa. Since ϕ is a bijection, then
0 =

∑
xi∈F ϕ(xi)

ti −
∑

xi∈F x
ti
i =

∑
xi∈F ω

tixtii −
∑

xi∈F x
ti
i = (ωti − 1)

∑
xi∈F x

ti
i . Since 0 < ti < |F | − 1,

ωti ̸= 1 and thus
∑

xi∈F x
ti
i = 0.

We will now state and prove the Chevalley-Warning Theorem, which can be seen as a predecessor
to the Combinatorial Nullstellensatz, also following as a Corollary. According to Chapter 14 from
Clark’s lecture notes, [Cla09], Artin originally conjectured Corollary 3.4 as a problem for his student,
Ewald Warning, to solve. However, on a visit to Göttingen in 1935, Chevalley managed to get wind
of the problem and was the first to prove it. Warning went on to prove what is now known as the
Chevalley-Warning Theorem which is, in fact, the stronger statement.

Theorem 3.2 (Chevalley-Warning Theorem). Let F be a finite field and let hi ∈ F[x1, ..., xn] for i ∈ [n]

such that
∑

i∈[n] deg(hi) < n. Then the number of solutions x = (x1, ..., xn) ∈ Fn satisfying hi(x) = 0

for all i ∈ [n] is a multiple of char(F).
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Proof. Since we are working in a finite field, we have I{0}(t) = 1− t|F|−1,∀ t ∈ F. Thus, an indicator
function for when an hi evaluates to zero can be written simply as IZ(hi)(x) = 1− (hi(x))

|F|−1. Defining
Z(h) := {x ∈ Fn : hi(x) = 0 ∀i ∈ [n]},

IZ(h)(x) =
∏
i∈[n]

IZ(hi) =
∏
i∈[m]

(1− hi(x)
|F|−1) =

∑
t∈Nn

0

ctx
t

for some ct ∈ F. It is clear that the degree of every monomial deg(xt) =
∑

i∈[n] ti ≤ (F−1)
∑

i∈[n] deg(hi) <

n(F− 1) since
∑

i∈[n] deg(hi) < n by assumption. Thus by the pigeonhole principle, for every monomial
xt, ∃ i ∈ [n] such that ti < |F| − 1 so, using Lemma 3.1 and working modulo char(F),

|{x ∈ Fn : hi(x) = 0 ∀ i ∈ [m]}| ≡
∑
x∈Fn

IZ(h)(x) =
∑
x∈Fn

∑
t∈Nn

0

ctx
t

=
∑
t∈Nn

0

ct
∑
x∈Fn

xt = 0

The following Corollary follows since char(F) is prime and is thus at least 2.

Corollary 3.3. If there is one solution, x = (x1, ..., xn) ∈ Fn satisfying hi(x) = 0 for all i ∈ [n], then
there must exist at least one other solution.

Corollary 3.4. If the hi are homogeneous polynomials ie. hi(0) = 0 ∀i ∈ [n] then there exists v ̸= 0

satisfying hi(v) = 0 ∀i.

There is still research into various generalisations of the Chevalley-Warning Theorem, including
[Bri11], which uses the Combinatorial Nullstellensatz to prove an extension of the Chevalley-Warning
where we allow variables to be restricted to arbitrary subsets.

We now reuse the observation we introduced at the start of this section to prove a beautiful result
about how the size of the output of a polynomial of 1 variable depends on its degree. It was first proved
by Wan in [Wan87] using p-adic liftings, after which Turnwald gave a much simpler argument in [Tur88]
which we present here.

Theorem 3.5. Let F be a finite field and let P ∈ F[t] be a polynomial of degree n. Then P (F) = {a ∈
F : ∃ t ∈ F, P (t) = a} is either equal to F or has size at most |F| − |F|−1

n .

Taking P (t) = t, then P (F) = F and it is shown in [CM96] that the latter bound is sharp, in
particular, if we take the polynomial P (t) = (t− 1)tp−1 where p = char(F).

Proof. Subtracting a constant from P does not change |P (F)| so we assume P (0) = 0. Now define
Q ∈ F[t] where

Q(t) =
∏
a∈F

(t− P (a)) = t|F| +

|F|−1∑
i=0

cit
i (3.1)

for some ci ∈ F and Z(Q) = P (F). Since F is a field, for s ∈ F× then t 7→ st for t ∈ F is a bijection and
thus we also have

Q(t) =
∏
a∈F

(t− P (a)) =
∏
a∈F

(t− P (sa)) = t|F| +

|F|−1∑
i=0

pi(s)t
i (3.2)

for some polynomials pi which have degree at most n(|F| − i). Equating coefficients of Q in the RHS
of Equation 3.1 and Equation 3.2, we have pi(s) = ci for all s ∈ F× and thus defining polynomials
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qi(s) := pi(s)− ci then Z(qi) ⊆ F× and deg(qi) ≤ n(|F|− i). Now by the Factor Theorem, Lemma 1.7, if
n(|F| − i) < |F| − 1 then qi(s) ≡ 0 and thus pi(s) ≡ ci. However, since

∏
a∈F(t− P (sa)) =

∑|F|
i=0 pi(s)t

i

holds ∀ s ∈ F and P (0) = 0 then plugging in s = 0 gives us that pi(s) = 0 and thus ci = 0, ∀ i > |F|− |F|−1
n .

Finally, define Q̂ ∈ F[t] where

Q̂(t) := Q(t)− (t|F| − t) = t|F| +

|F|−1∑
i=0

cit
i

− (t|F| − t) =

|F|− |F|−1
n∑

i=0

cit
i

− t

so deg(Q̂) ≤ |F| − |F|−1
n . Since t|F| − t = 0,∀ t ∈ F, then Z(Q̂) = Z(Q) = P (F) and if Q̂ is a

non-zero polynomial then we use the Factor Theorem, Lemma 1.7, once more to conclude that
|P (F)| = |Z(Q̂)| ≤ |F| − |F|−1

n . If Q̂(t) ≡ 0 then Q(t) ≡ t|F| − t ≡
∏

a∈F(t− a) ≡
∏

a∈F(t− P (a)) and
thus P (F) = F.

3.2 Combinatorial Nullstellensatz

We now state and prove the Combinatorial Nullstellensatz, Theorem 1.2 in Alon’s paper, [Alo99].

Theorem 3.6 (Combinatorial Nullstellensatz). Given an arbitrary field F, let P ∈ F[x1, ..., xn] be a
polynomial of degree d1 + ...+ dn where the coefficient of xd11 ...xdnn in P is non-zero. Then P does not
vanish on any set of the form E1 × ...× En where E1, ..., En ⊆ F and |E1| > d1, ..., |En| > dn.

In [Alo99], Theorem 3.6 in fact follows as a corollary from a result that we state in Section 3.7, but
which has a technical proof. Instead, we prove Theorem 3.6 from scratch in a short proof by Michałek
from [Mic10].

Proof. We prove this by induction on the degree of P . Clearly, if deg(P ) = 0, the results follows
immediately. If deg(P ) = 1, exactly one dj is non-zero, so, taking any values in Ek for k ̸= j, and
plugging them into the polynomial, we have a linear polynomial in one variable since deg(P ) = 1. Thus,
since |Ej | > 1, there is an element in Ej at which the polynomial is non-zero.

Now, for the induction step, suppose deg(P ) > 1 and the claim is true when deg(P ) = n − 1.
Looking for a contradiction, assume P (x) = 0 for all x ∈ E1 × ...× En, and, without loss of generality,
assume d1 > 0. Fixing some a ∈ E1, write P = (x1 − a)Q+R using the long division algorithm where
we treat P as a polynomial in x1 over the ring F[x2, ..., xn]. Since, deg(R) < deg(x1 − a) = 1, R is a
constant in the ring F[x2, ..., xn] and thus doesn’t contain the variable x1. Using the original conditions
on P , Q must have a non-vanishing monomial of the form xd1−1

1 xd22 ...xdnn and also deg(Q) = deg(P )−1.
Now for any x ∈ {a} × E2 × ... × En, P (x) = 0 which implies R(x) = 0 also. However, R doesn’t
contain x1 so R also vanishes on E1\{a} × E2 × ... × En. Thus, for any x ∈ E1\{a} × E2 × ... × En,
since P (x) = R(x) = 0 and x1 − a ̸= 0, then Q(x) = 0. However this contradicts our induction step
assumption.

Harnessing the power of the Combinatorial Nullstellensatz to prove extremal results usually works
by contradiction, as we will demonstrate in Section 3.3. We assume that we have a set which fulfils
the conditions of the problem but is outside the bounds we want to prove and construct a polynomial
which vanishes on this set. We then find a non-zero monomial in that polynomial with the required
properties and apply the Combinatorial Nullstellensatz to find a non-zero point on said polynomial in
our set which gives us our contradiction. In practice, it is often finding the non-zero monomial that
tends to provide resistance. However, there are many theorems available to help this process, such as
Dyson’s conjecture, which we state later, and results found in Chapter 9 of [TV06].
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3.3 Sum Sets

Sum sets are the archetypal objects that the area of additive combinatorics, a relatively modern
area of maths which Tao and Vu unified in [TV06], aims to study. Before we use the Combinatorial
Nullstellensatz to tackle the Cauchy-Davenport Inequality and the Erdős-Heilbronn conjecture, both of
which give a lower bounds on the size of sum sets over finite fields, we introduce sum sets over R and
look at the inverse problem: given a sum set of minimal size, what is its structure?

Definition 3.7. For a field F, let A,B ⊆ F where A and B are non-empty sets. Then the sum set of A
and B is the set A+B = {a+ b : a ∈ A, b ∈ B}.

As in Wheeler’s notes, [Whe09], many famous solved and unsolved problems can be restated in
simple terms using sum set notation.

Theorem 3.8 (Lagrange’s four-square theorem). Let □ = {x2 : x ∈ Z}, then

N0 = □+□+□+□

Conjecture 3.9 (Goldbach conjecture). For E = {2x : x ∈ Z≥3} and P = {p : p is an odd prime}

E = P+ P

Using the total order on R makes bounding the size of sum sets very easy.

Lemma 3.10. For sets A, B ∈ R, |A+B| ≥ |A|+ |B| − 1.

Proof. Let A = {a1, ..., ak} and B = {b1, ..., bl} where a1 < a2 < ... < ak and b1 < b2 < ... < bl. Then,
a1 + b1 < a1 + b2 < ... < a1 + bl < a2 + bl < ... < ak + bl are k + l − 1 distinct elements.

Taking A and B to be arithmetic progressions with the same common difference, we note that this
is a tight bound. Even better, this is an if and only if statement for which we provide our own proof.

Lemma 3.11. For sets A, B ∈ R, |A + B| = |A| + |B| − 1 if and only if A and B are arithmetic
progressions with the same common difference.

Proof. For the ⇐ direction, let A = {a0, ..., ak} and B = {b0, ..., bl} be arithmetic progressions,
both with common difference d ̸= 0 ie. am = a0 + dm for m ∈ [k] and bn = b0 + dn for j ∈ [l]. Then
am+bn = a0+b0+d(m+n) and thus |A+B| = |{m+n : 0 ≤ m ≤ k, 0 ≤ n ≤ l}| = k+l+1 = |A|+|B|−1.

For the ⇒ direction, let A,B,A+B be the ordered sets {a0, ..., ak}, {b0, ..., bl}, {c0, ..., ck+l} respec-
tively. For an arbitrary element am + bn ∈ A+B, then a0 + b0 < a0 + b1 < ... < a0 + bn < a1 + bn <

... < am + bn < ... < ak + bn < ak + bn+1 < ... < ak + bl and thus, by the pigeonhole principle,
cm+n = am + bn. Now for all 0 ≤ m ≤ k, 0 ≤ n ≤ l, we have am+1 + bn = am + bn+1 and so we can
define d := am+1 − am = bn+1 − bn and thus A and B are both arithmetic progressions with common
difference d.

To bound the size of sum sets over fields without a total order such as finite fields requires more
complex techniques, as we will see when we tackle the Cauchy-Davenport inequality. There are also
many results about sum sets over the complex numbers, including the following interesting relation
between sum and product sets by Chang in [Cha05].

Theorem 3.12. Given a finite set A ⊂ C, denote the product set A ·A = {a1a2 : a1, a2 ∈ A}. Then

max(A+A,A ·A) ≥ |A|1+
1
54
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Cauchy-Davenport Inequality

While we might expect that, if we switch R to a finite field of order p, we will get smaller sum sets, the
Cauchy-Davenport inequality says otherwise. First proved by Cauchy in [Cau13] in 1813, it was later
reproved independently by Davenport in [Dav35] in 1935. However, perhaps the quickest method, and
the one which we use now, was found by Alon, Nathanson and Ruzsa in Chapter 3 of [ANR95] and
uses the Combinatorial Nullstellensatz.

Theorem 3.13 (Cauchy-Davenport inequality). Let A,B ⊆ Fp where A, B are non-empty sets. Then
|A+B| ≥ min(|A|+ |B| − 1, p).

Example 3.14. Let p = 7. To minimise |A + B|, as was the case in R, we might try to make A

and B contain arithmetic progressions with the same difference. For example, taking A = {0, 2, 4},
B = {1, 3, 5}, then A + B = {0, 1, 2, 3, 5}. However, we still haven’t done better than if we had just
worked over R since {0, 2, 4}+ {1, 3, 5} = {1, 3, 5, 7, 9}.

Proof. If |A| + |B| > p, then for any x ∈ F let x − B := {x − b : b ∈ B}, then |A| + |x − B| ≥ p + 1

since |B| = |x−B|. By the pigeonhole principle and the fact that |F| = p, then |A ∩ (x−B)| ≥ 1 and
thus ∃ a ∈ A, b ∈ B such that a = x− b ⇔ a+ b = x. Since x was arbitrary then A+B = F.

Now assume |A|+ |B| ≤ p, and, seeking a contradiction, assume that A+B ⊆ C for some set C

with |C| = |A|+ |B| − 2. Now define the polynomial P ∈ F[x, y],

P (x, y) :=
∏
c∈C

(x+ y − c)

which has degree |C| and has A× B ⊆ Z(P ). Now notice that the coefficient of x|A|−1y|B|−1 in P is(|A|+|B|−2
|B|−1

)
mod p which is non-zero since |A|+ |B| − 2 < p. Thus by the Combinatorial Nullstellensatz,

Theorem 3.6, A×B ̸⊆ Z(P ) and thus we have our contradiction.

There are many other proofs of the Cauchy-Davenport inequality using Fourier analysis or the
e-transform amongst other techniques. We do not go into these here but they are covered in depth in
[TV06].

Erdős-Heilbronn Conjecture

An interesting variant of the sum set is the restricted sum set. According to [Whe09], a similar bound
to the Cauchy-Davenport inequality but this time for restricted sum sets, was first conjectured by
Erdős and Heilbronn in the 1960s. This result resisted any sort of progress until it was proven by Alon,
Nathanson and Ruzsa in 1995 in [ANR95]. Their proof of the Erdős-Heilbronn conjecture follows almost
exactly the same structure, using the Combinatorial Nullstellensatz, as their proof the Cauchy-Davenport
inequality.

Definition 3.15. For a field F, let A,B ⊆ F where A and B are non-empty sets. Then the restricted
sum-set of A and B is the set A+̂B = {a+ b : a ∈ A, b ∈ B, a ̸= b}.

Theorem 3.16 (Erdős-Heilbronn conjecture). Let A,B ⊆ Fp where A, B are non-empty sets, then
|A +̂B| ≥ min(|A|+ |B| − 3, p). Furthermore, if |A| ≠ |B|, then |A +̂B| ≥ min(|A|+ |B| − 2, p).

Example 3.17. Let p = 7. We again try to minimise |A +̂B| by letting A = B = {1, 3, 5} be the same
set and also an arithmetic progression. Thus |A +̂B| = |{1, 4, 6}| = 3 = |A|+ |B| − 3.
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We fill in the gaps of the proof of the Erdős-Heilbronn conjecture in Section 9.2 of [TV06].

Proof. It is enough to prove the latter result since if |A| = |B| > 1, then, for any a ∈ A, |A +̂B| ≥
|A\{a} +̂B| ≥ min(|A| + |B| − 3, p) so assume |A| ≠ |B|. In addition, if either |A| = 1 or |B| = 1,
then wlog, letting |A| = {a}, |A +̂B| = |B\{a}+ a| = |B\{a}| ≥ |B| − 1 = |A|+ |B| − 2. Finally, if
|A|+ |B| − 2 ≥ p, then for any x ∈ F, |A|+ |x − B| ≥ p+ 2 since |B| = |x − B|. By the pigeonhole
principle and the fact that |F| = p, then |A ∩ (x−B)| ≥ 2 and thus ∃ a ∈ A, b ∈ B such that a ̸= b and
a = x− b ⇔ a+ b = x. Since x was arbitrary then A+B = F and |A+B| = p.

Assume |A|+ |B| − 2 < p, and, seeking a contradiction, assume that A+ B ⊆ C for some set C

with |C| = |A|+ |B| − 3. Define the polynomial P ∈ F[x, y],

Q(x, y) := (x− y)
∏
c∈C

(x+ y − c)

where Q(a, b) = 0, ∀a ∈ A, b ∈ B and deg(Q) = |C| + 1. The coefficient of x|A|−1y|B|−1 in Q can
be computed as

(|A|+|B|−3
|A|−2

)
−
(|A|+|B|−3

|B|−2

)
≡ (|A|+|B|−3)!

(|A|−2)!(|B|−2)!(|A| − |B|)mod p which is non-zero since
|A|+ |B|−3 < p and |A| ≠ |B|. Thus by the Combinatorial Nullstellensatz, Theorem 3.6, A×B ̸⊆ Z(Q)

and thus we have our contradiction.

Corollary 3.18. For a non-empty subset A ⊆ Fp, then |A +̂A| ≥ min(2|A| − 3, p).

The year before Alon, Nathanson and Ruzsa proved the Erdős-Heilbronn conjecture in 1995, Da
Silva, Dias and Hamidoune in [DH94] had used a variant of the polynomial method and a general result
about Grassmann derivatives to prove the following theorem, Theorem 3.19, from which Corollary 3.18
follows by setting k = 2.

Theorem 3.19. For p prime, A ⊆ Fp and 1 ≤ k ≤ |A|, then∣∣∣∣∣
{

k∑
i=1

ak : ai ∈ A, a1 ̸= ... ̸= ak

}∣∣∣∣∣ ≥ min(k|A| − k2 + 1, p).

Generalisation to Finite Groups

Following Wheeler’s lecture notes [Whe09] again, we can extend the Cauchy-Davenport Inequality and
the Erdős-Heilbronn Conjecture to results for any finite group G. In the process, we need to define the
minimal torsion element of a group, however, with that in hand, both theorems are effectively the same
as they were when we were just looking over finite fields of order p.

Definition 3.20. We define the minimal torsion element p(G) of a group G to be the smallest positive
integer p for which there exists a g ∈ G\{e}, such that gp = e. If no such g exists then p(G) = ∞.

Theorem 3.21 (Cauchy-Davenport Inequality for Finite Groups). Let G be a finite group with non-
empty subsets A, B ⊆ G then

|{a · b : a ∈ A, b ∈ B}| ≥ min(p(G), |A|+ |B| − 1)

Theorem 3.22 (Erdős-Heilbronn Conjecture for Finite Groups). Let G be a finite group with non-empty
subsets A, B ⊆ G then

|{a · b : a ∈ A, b ∈ B, a ̸= b}| ≥ min(p(G), |A|+ |B| − 3)
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3.4 Latin Squares and Latin Transversals

As discussed earlier, the challenging part of applying the Combinatorial Nullstellensatz is often finding
the relevant non-zero monomial. To prove Theorem 3.26, a result about Latin squares below, we will
need Dyson’s conjecture, an incredibly useful piece of machinery, however, one which we will not prove
here but has a short proof given by Good in [Goo70].

Theorem 3.23 (Dyson’s conjecture). Let a1, ..., an ∈ N. Then the coefficient of∏
i∈[n]

x
(n−1)ai
i in

∏
i,j∈[n]
i ̸=j

(xj − xi)
aj is

(a1 + ...+ an)!

a1!...an!
.

We can now introduce Latin squares, an example of which are sudoku grids and another key object
of study in additive combinatorics.

Definition 3.24. A Latin square S is an n×n array of n symbols in which each symbol appears exactly
once in each row and column. A Latin transversal of S is a set of cells containing every symbol such
that no two cells share a row or column.

Remark 3.25. It is easy to see that for subsets A,B ⊆ R for ring R, the addition table given by
(a+ b)a∈A,b∈B is a Latin square. An example is given in Figure 3.1.

Figure 3.1: An arbitrary 4× 4 Latin square (left) and the addition table of F5 (right).

4× 4 Latin square

No Latin transversals possible.

AA BB CC DD

AABB CC DD

AA BBCC DD

AA BB CCDD

F5 addition table

Latin transversal coloured.

+ 0 1 2 3 4

0

1

2

3

4

0 1 2 3 4

1 2 3 4 0

2 3 4 0 1

3 4 0 1 2

4 0 1 2 3

The following theorem was proved by Alon in a follow-up paper to [Alo99], where he proved the
Combinatorial Nullstellensatz and demonstrates the strength of the Combinatorial Nullstellensatz in an
existence problem. We follow Section 9.3 of [TV06] which proves effectively the same statement.
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Theorem 3.26. For subsets A,B ⊆ Fp for odd prime p where we enumerate A = {a1, ..., an} and
B = {b1, ..., bn} for n ∈ N, then the addition table (ai + bj)i,j∈[n] has a Latin transversal.

Proof. If n = p then the main diagonal is a Latin transversal since 2 generates Fp so assume n < p.
Now define T ∈ Fp[x1, ..., xn] by

T (x1, ..., xn) :=
∏

1≤i<j≤n

(xj − xi)(xi − xj + ai − aj).

By Dyson’s conjecture, Theorem 3.23, taking ai = 1,∀ i ∈ [n], the coefficient of xn−1
1 ... xn−1

n in T is n!

which is non-zero in Fp since n < p. So, by the Combinatorial Nullstellensatz with Ei = B, there exist
bi ∈ B for i ∈ [n] such that bi ̸= bj and ai + bi ̸= aj + bj for i ̸= j where i, j ∈ [n].

Shortly after Alon published his proof, Dasgupta, Károlyi, Serra and Szegedy generalised the proof
to work for subsets of cyclic groups of any order in [Das+01]. The generalisation of Theorem 3.26 to
any abelian group of odd order is known as Snevily’s Conjecture, which was proved in 2011 by Arsovski
using the theory of characters in [Ars11]. We state Snevily’s Conjecture in its original form, which is
equivalent to our formulation in terms of Latin squares.

Theorem 3.27 (Snevily’s Conjecture). For G, an abelian group with odd order and subsets A =

{a1, ..., ak} and B = {b1, ..., bk}, then there exists a permutation σ ∈ Sk such that sums ai + bσ(i) for
i ∈ [k] are distinct.

The theory of Latin transversals is, perhaps surprisingly, difficult. In fact, the following, conjectured
by Ryser in 1976, is still unsolved.

Conjecture 3.28. For n odd, every Latin square has a Latin transversal.

3.5 Vandermonde’s Matrix

The Vandermonde matrix and the ensuing Vandermonde’s identity, a formula for the determinant of
the Vandermonde matrix, will prove incredibly useful for the remainder of this report. As covered in
Section 9.2 of [TV06], the determinant, and even permanent, of the Vandermonde matrix can be used
in the proof of Dyson’s conjecture, Theorem 3.23, and Snevily’s Conjecture, Theorem 3.27.

Definition 3.29 (Vandermonde matrix). For each n ∈ N, let Vn ∈ Mn(F[x1, ..., xn]) be the Vandermonde
matrix, with elements (Vn)i j = xj−1

i for all i, j ∈ [n].

Example 3.30. V3 =

1 x1 x21
1 x2 x22
1 x3 x23

 ∈ M3(C[x1, x2, x3]) is the 3× 3 Vandermonde matrix where we

notice that the determinant is detV3 = x2x
2
3 − x3x

2
2 + x3x

2
1 − x1x

2
3 + x1x

2
2 − x2x

2
1 = (x3 − x2)(x3 −

x1)(x2−x1). The reason for this interesting factorisation becomes clearer when we notice that if x1 = x2,
the first two rows are the same and thus the determinant will be 0. Similarly for x1 = x3 or x2 = x3.
This pattern continues to hold for Vn for any n ∈ N and is known as Vandermonde’s identity.

Lemma 3.31 (Vandermonde’s identity). If Vn ∈ Mn(F[x1, ..., xn]) is the Vandermonde matrix, then

detVn(x) =
∏

1≤i<j≤n

(xj − xi)
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Just before we present our own version of the proof of Vandermonde’s identity, Lemma 3.31, we
need to state the Leibniz determinant formula, a nice form for the determinant as sums of permutations.

Lemma 3.32 (Leibniz determinant formula). Given an n× n matrix A with entries Ai j, we have

det(A) =
∑
σ∈Sn

sgn(σ)
∏
i∈[n]

Ai σ(i)

where sgn(σ) = (−1)Nσ , where Nσ is the number of transpositions in the decomposition of σ.

Proof of Vandermonde’s identity. We will prove this by induction on k. The k = 1 case holds since,
on the LHS, the 1× 1 Vandermonde matrix is simply the number 1. On the RHS, there are no terms
in the product so it is automatically 1. Now assume the k × k Vandermonde matrix has determinant
detVk(x) =

∏
1≤i<j≤k(xj − xi). Take the (k + 1)× (k + 1) Vandermonde matrix Vk+1 and consider its

determinant detVk+1 as a polynomial in xk+1 over the ring R := F[x1, x1, ..., xk] ie. detVk+1 ∈ R[xk+1].
As in Example 3.30, we notice that plugging xi for any i ∈ [k] into detVk+1(xi) = 0 , since then the
matrix has two identical rows so the determinant will be 0. Letting Q :=

∏
i∈[k](xk+1 − xi) ∈ R[xk+1],

by the Factor Theorem, Theorem 1.7, detVk+1 = QP for some polynomial P ∈ R[xk+1]. We now
notice that deg(detVk+1) = k, since the Leibniz determinant formula, Lemma 3.32, insists that in each
monomial of detVn+1, we must pick one element from each row. Now consider the coefficient in front
of xkk+1 on both sides of detVk+1 = QP . On the LHS, since we have to pick one element from each
row and column, the coefficient in front of xkk+1 is simply the determinant of the k × k Vandermonde
matrix Vk. On the RHS, deg(Q) = k and thus deg(P ) = 0 so P ∈ R and we in fact have that P is also
the coefficient of xkk+1. Matching these coefficients and using our induction hypothesis,

detVk+1 = QP =
∏

1≤i≤k

(xk+1 − xi) detVk =
∏

1≤i≤k

(xk+1 − xi)
∏

1≤i<j≤k

(xj − xi) =
∏

1≤i<j≤k+1

(xj − xi)

so the claim also holds for the (k + 1)× (k + 1) Vandermonde matrix.

We demonstrate a use case of Vandermonde’s identity in the proof of the next result, first shown by
Schur in [Sch08], and reformulated by Tao and Vu in [TV06]. The proof also incorporates a variant of
the observation made at the start of Section 3.1, where this time we only sum over a subset of F, not
necessarily the whole field.

Theorem 3.33. Let F be a finite field with non-empty U ⊆ F× and let P ∈ F[t] be a polynomial of
degree n such that P (t+U) = {P (t+ u) : u ∈ U} = {P (t) + u : u ∈ U} = P (t) +U for all t ∈ F. Then,
if n > 1, then |U | > |F| − n.

We provide Müller’s proof from [Mül05] in which he uses this result to prove a theorem by Burnside.

Proof. If n ≤ |F| then the statement is trivial so assume n < |F|. Let m be the largest integer such that
mn < |F|. Then define Q ∈ F[t] where

Q(t) =
∑
u∈U

(P (t+ u))m − (P (t) + u))m

which has degree at most mn and Q(t) = 0,∀ t ∈ F. In addition, since mn < |F| then by the Factor
Theorem, Lemma 1.7, then Q(t) ≡ 0 and thus∑

u∈U
(P (t+ u))m ≡

∑
u∈U

(P (t) + u)m. (3.3)
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Let us enumerate U = {u1, ..., u|U |} then consider the matrix Mi j = uji for i, j ∈ [|U |]. It is clear to see
that

det(M) =

 |U |∏
i=1

ui

detV|U |(u1, ..., u|U |) =

 |U |∏
i=1

ui

 ∏
1≤i<j≤|U |

(uj − ui)

 ̸= 0.

For k ∈ N, set S(k) :=
∑

u∈U uk and assume S(k) = 0 for all 1 ≤ k ≤ |U |. Thus, each column of M
adds up to 0, implying that adding up the rows of M as vectors gives the zero vector, which means the
rows are not linearly dependent contradicting the fact that det(M) ̸= 0. Thus, we can let 1 ≤ r ≤ |U |
be the minimal positive integer such that S(r) ̸= 0. We now notice that, using Equation 3.3, we can
write ∑

u∈U
(P (t+ u))m − P (t)m =

∑
u∈U

(P (t) + u)m − P (t)m =
∑
u∈U

m∑
i=1

(
m

i

)
uiP (t)m−i

=
m∑
i=1

(
m

i

)
S(i)P (t)m−i =

m∑
i=r

(
m

i

)
S(i)P (t)m−i.

We note that deg(P (t)m) = mn so tmn is an F-linear combination of the formal derivatives of P (t)m so
we can write tmn =

∑mn
j=0 cj

dj

dtj
(P (t)m). Thus we obtain

∑
u∈U

(t+ u)mn − tmn =
∑
u∈U

mn∑
j=0

cj
dj

dtj
(P (t+ u)m)

−
mn∑
j=0

cj
dj

dtj
(P (t)m)

=
mn∑
j=0

cj
dj

dtj

(∑
u∈U

(P (t+ u))m − P (t)m

)
=

mn∑
j=0

cj
dj

dtj

(
m∑
i=r

(
m

i

)
S(i)P (t)m−i

)

=

mn∑
j=0

m∑
i=r

cj

(
m

i

)
S(i)

dj

dtj
P (t)m−i

which has degree at most n(m− r) since deg( dj

dtj
P (t)m−i) ≤ n(m− r) for 0 ≤ j ≤ mn, r ≤ i ≤ m. Now,

suppose that r ≤ nm, then we also have

∑
u∈U

(t+ u)mn − tmn =
∑
u∈U

mn∑
i=1

(
m

i

)
uitmn−i =

mn∑
i=1

(
mn

i

)
S(i)tmn−i

and thus the coefficient of xnm−r in the expansion is
(
mn
r

)
S(r) ̸= 0 contradicting the degree being at

most n(m− r) since n > 1. Thus we conclude that r > nm and hence mn < r ≤ |U | < |F| ≤ (m+ 1)n.
Thus, |F| − |U | < n since m is an integer and |U | > |F| − n.

3.6 Invertible Matrices Constructed from Sets

We will now use the Combinatorial Nullstellensatz along with properties of the Vandermonde matrix
to prove another existence statement, now about invertible matrices, first described to me by my
supervisor, Dr. Dan Evans.

Theorem 3.34. Given a field F, an integer n > 1 and a set S ⊆ F, where 1 < |S| ≤ n2 ≤ |F|, we can
construct an invertible n× n matrix using all elements in S at least once each.

Our proof of this Theorem is split into two cases: |S| > n + 1 and |S| ≤ n + 1. We will prove
the |S| > n+ 1 case using the Combinatorial Nullstellensatz and the properties of the Vandermonde
matrix, V|S|, whereas we prove the |S| ≤ n+1 by manually constructing a matrix with |S| variables and
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computing the determinant which we show is non-zero. It would be hard to apply the Combinatorial
Nullstellensatz for smaller |S| due to the condition that each variable in our chosen monomial has to
have degree less than |S|. Likewise, if |S| is larger, computing the determinant of a matrix with |S|
variables would become unruly very quickly.

Proof. We first consider the case |S| > n+ 1 and construct two matrices with entries in F[x1, ..., x|S|].
We define M ∈ Mn(F) to be the n× n matrix where we put x|S| in the bottom left corner, x|S|−n up to
x|S|−1 along the main diagonal and arrange x1, ..., x|S|−n−1 in the other entries of the matrix in any way
but including each at least once. We also let V|S| be the |S| × |S| Vandermonde matrix from Definition
3.29. For example, taking |S| = n+ 2, we would have

M =



x2 x1 x1 . . . x1 x1 x1

x1 x3 x1 . . . x1 x1 x1

x1 x1 x4 . . . x1 x1 x1
...

...
...

. . .
...

...
...

x1 x1 x1 . . . xn−1 x1 x1

x1 x1 x1 . . . x1 xn x1

xn+2 x1 x1 . . . x1 x1 xn+1


Vn+2 =



1 x1 x21 . . . xn+1
1

1 x2 x22 . . . xn+1
2

...
...

...
. . .

...
1 xn+1 x2n+1 . . . xn+1

n+1

1 xn+2 x2n+2 . . . xn+1
n+2


.

Now, we can construct the polynomial P ∈ F[x1, ..., x|S|], using Lemma 3.31, given by

P = detM detV|S| = detM
∏

1≤i<j≤|S|

(xj − xi) where deg(P ) ≤ n+

(
|S|
2

)
= n+

|S|−1∑
k=1

k

Note that the existence of a non-zero solution of P in S|S| is equivalent to Theorem 3.34 so, if we
can apply the Combinatorial Nullstellensatz to P with sets Ek = S for k ∈ [|S|], we are done. Using
the Leibniz formula for the determinant, Lemma 3.32, and the definition of the Vandermonde matrix
V|S|, we can write

detV|S| =
∑

τ∈S|S|

sgn(τ)

|S|∏
k=1

(V|S|)k τ(k) =
∑

τ∈S|S|

sgn(τ)

|S|∏
k=1

x
τ(k)−1
k

Clearly, each term in the sum over τ ∈ S|S| gives a unique monomial in detV|S| which has coeffi-
cient sgn(τ). In addition, since xi for i ∈ {|S| − n, ..., |S| − 1} appear only once each in M along
the diagonal, then the monomial

∏|S|−1
i=|S|−n xi appears once in the Leibniz formula for det(M) =∑

σ∈Sn
sgn(σ)

∏n
i=1Mi σ(i) corresponding to σ ∈ Sn where σ(i) = i,∀ i ∈ [n].

We now claim that given any monomial
∏n

i=1Mi σ(i) for some σ ∈ Sn with non-zero coefficient in
detM and any monomial

∏|S|
k=1 x

τ(k)−1
k for some τ ∈ S|S| with non-zero coefficient in detV|S|, such that

m :=

|S|∏
k=1

xk−1
k

|S|−1∏
i=|S|−n

xk =

|S|∏
k=1

x
τ(k)−1
k

n∏
i=1

Mi σ(i) (3.4)

then we get unique forms of σ and τ , given by σ(i) = i for i ∈ [n] and τ(k) = k for k ∈ [|S|]. This
then implies that m has coefficient sgn(σ) sgn(τ) ̸= 0 in P . In addition, deg(m) = n+

∑|S|
k=1(k − 1) =

n+
∑|S|−1

k=1 k = n+
(|S|

2

)
and x

|S|
k ∤ m for k ∈ [|S|]. Thus, as in Theorem 3.6, taking sets Ek = S for

k ∈ [|S|] and applying the Combinatorial Nullstellensatz, the claim follows for |S| > n+ 1.
We first prove that Equation 3.4 implies that τ(k) = k for 1 ≤ k < |S| − n. We first work by

induction on k. The base case k = 1 follows since x1 ∤ m since |S| − n > 1, but thus on the RHS
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of Equation 3.4, τ(1) = 1. Now assume τ(j) = j for all 1 ≤ j < k < |S| − n. Since τ is a bijection,
τ(k) ≥ k, but looking at the LHS of Equation 3.4, clearly xkk ∤ m, so τ(k) ≤ k and thus τ(k) = k.

We will now show that this implies σ(i) = i for i ∈ [n]. This follows by noticing that if, for some
i ∈ [n], Mi σ(i) = xk for some 1 ≤ k < |S| − n then since τ(k) = k and using the RHS of Equation 3.4,
xkk|m which gives us a contradiction since xkk ∤ m on the LHS. This implies that ∀ i ∈ [n], Mi σ(i) = xj

for some |S| − n ≤ j ≤ |S|. However, these xj are precisely the elements along the main diagonal
together with the bottom left corner of the matrix M by its construction. Thus, we must have that
Mi σ(i) = Mi i for all 1 ≤ i < n and since σ is a bijection, then we find σ(i) = i for i ∈ [n].

Finally, we can now continue our induction on k. So assume τ(j) = j for all 0 ≤ j < k where
|S| − n ≤ k ≤ |S| − 1. Since τ is a bijection, τ(k) ≥ k, but looking at the LHS of Equation 3.4, clearly
xk+1
k ∤ m and Mk−(|S|−n−1) k−(|S|−n−1) = xk, so τ(k) ≤ k and thus τ(k) = k. Using that τ is a bijection

a final time, τ(|S|) = |S| and thus τ(k) = k for all k ∈ [|S|].
We now tackle the case |S| ≤ n+ 1. Again, we construct a matrix M with entries in F[x1, ..., x|S|],

given by putting x1 in all entries below the main diagonal and filling the rest of the ith column with
xmin(i+1,|S|−1). We demonstrate with the matrix for |S| = n+ 1 below.

M =



x2 x3 x4 . . . xn xn+1

x1 x3 x4 . . . xn xn+1

x1 x1 x4 . . . xn xn+1

...
...

...
. . .

...
x1 x1 x1 . . . xn xn+1

x1 x1 x1 . . . x1 xn+1


By taking the nth row away from every other row, due to the standard linear algebra fact that adding
a multiple of one column to another column doesn’t change the determinant, we get a matrix M̃ , where
detM = det M̃ . For |S| = n+ 1, this is given by

M̃ =



x2 − x1 x3 − x1 x4 − x1 . . . xn − x1 0

0 x3 − x1 x4 − x1 . . . xn − x1 0

0 0 x4 − x1 . . . xn − x1 0
...

...
...

. . .
...

0 0 0 . . . xn − x1 0

x0 x0 x0 . . . x0 xn+1


Taking the determinant is now much simpler so

det M̃ = xn+1(x|S| − x1)
n−|S|+1

|S|−1∏
k=2

(xk − x1) = detM

and thus, by choosing x1 /∈ {x2, ..., x|S|} and xn+1 ̸= 0 which is always possible since |S| ≥ 2, M has
non-zero determinant.

In Chapter 4, we will generalise this result and give an exact condition on when a set of elements S

can be turned into an invertible matrix. However, to get to this point, we will need more specialised
theory about the interaction of Vandermonde’s identity and the determinants of matrices, all building
on the Combinatorial Nullstellensatz.
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3.7 Polynomial Ideals

In Chapter 3 thus far, we have focused almost exclusively on the Combinatorial Nullstellensatz, Theorem
3.6, and its applications. However, it is slightly ungenuine to talk about this result as the Combinatorial
Nullstellensatz. As we noted in Section 3.2, in Alon’s original paper, [Alo99], what we have called the
Combinatorial Nullstellensatz so far, Theorem 3.6, is proved as a consequence of the following theorem,
Theorem 1.1 in [Alo99], which we will not prove, due to its technical proof.

Theorem 3.35. Given an arbitrary field F, let f ∈ F[x1, ..., xn]. Let S1, ..., Sn be non-empty subsets
of F and, for i ∈ [n], define gi(xi) :=

∏
a∈Si

(xi − a) ∈ F[xi]. If f(s) = 0 for all s ∈ S1 × ...× Sn, then
there exist polynomials h1, h2, ..., hn ∈ F[x1, ..., xn], where, for all i ∈ [n], deg(hi) ≤ deg(f)− |Si| such
that f =

∑
i∈[n] higi.

Later on we will need the following almost identical result to Theorem 3.35, which follows easily as
a Corollary from it. However, we will prove it fully using the Combinatorial Nullstellensatz we have
been using so far, Theorem 3.6, (the other way round to the way Alon did) for continuity.

Theorem 3.36. Given an arbitrary field F, let f ∈ F[x1, ..., xn]. Let S1, ..., Sn be non-empty subsets of
F and, for i ∈ [n], define gi(xi) :=

∏
a∈Si

(xi − a) ∈ F[xi]. Then, f(s) = 0 for all s ∈ S1 × ... × Sn if
and only if f ∈ ⟨gi(xi) : i ∈ [n]⟩.

Proof. The ⇐ direction follows since f ∈ ⟨gi(xi) : i ∈ [n]⟩ implies that, for some fi ∈ F[x], we can
write f(x) =

∑
i∈[n] fi(x)gi(xi). Since, gi(si) = 0 for all si ∈ Si, i ∈ [n] then clearly f(s) = 0 for all

s ∈ S1 × ...× Sn.
For the ⇒ direction, let f be the reduced polynomial obtained by writing f as a sum of monomials

and repeatedly substituting each instance of xeii with ei ≥ deg(gi) with a linear combination of smaller
powers of xi using gi(xi). Then we can guarantee that, for all i ∈ [n], the degree of f in just the variable
xi is less than deg(gi) ie. treating f ∈ R[xi] where R = F[x1, ..., xi−1, xi+1, ..., xn] then deg(f) < deg(gi).
We can then write f = f +

∑
i∈[n] higi for some hi ∈ F[x] implying that f(s) = 0, ∀ s ∈ S1 × ...× Sn.

Assume f ̸≡ 0 and take a monomial xα such that |α| = deg(f). This then contradicts the Combinatorial
Nullstellensatz, Theorem 3.6, by taking sets Ei = Si, ∀ i ∈ [n] since f(s) = 0, ∀ s ∈ S1 × ...× Sn. Thus
f ≡ 0 and so f =

∑
i∈[n] higi and f ∈ ⟨gi(xi) : i ∈ [n]⟩.

Using Theorem 3.36, instead of talking about polynomials vanishing at all points in a set as we did
in Theorem 3.6, we can wrap up this information by talking about polynomials being members of ideals,
which will prove more useful in Chapter 4. The ideal we will almost always use is ⟨xki − 1 : i ∈ [n]⟩ for
some k, n ∈ N. Then, by Theorem 3.36, for polynomial f ∈ F[x1, ..., xn] then f ∈ ⟨xki −1 : i ∈ [n]⟩ if and
only if f(s) = 0 for all s ∈ µn

k . The choice of ideal is almost completely arbitrary but the main reason we
use this ideal is that we get nice properties from the fact that f(x)mod⟨xni − 1 : i ∈ [n]⟩ is just f where
the exponent of each monomial is taken modulo k ie. if f(x) =

∑
α∈Nn

0
cαx

α then mod⟨xki − 1 : i ∈ [n]⟩,
we have f ≡

∑
β∈Zn

k
c′βx

β where c′β =
∑

α≡β (mod k) cα. We have to be careful that char(F) ∤ k otherwise,
gi(xi) = xki − 1 = (xi − 1)k and then the condition of Theorem 3.36 is no longer satisfied. Indeed, in
Section 4.1, we will have to consider the cases char(F)|k and char(F) ∤ k separately for this reason.
Furthermore, in Section 3.8, when working over C, the fact that all kth roots of unity point in different
directions and have the same absolute value will be important.
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3.8 (Hyper)graph k-colourings

We now apply Theorem 3.36 to the colouring of graphs and hypergraphs and give an original result,
inspired by Section 7 of [Alo99] and Section 4.2 of [Ale19].

Definition 3.37. A proper vertex colouring of a graph G is a labelling of the graph’s vertices with colours
such that no two vertices joined by an edge are labelled the same colour. A proper vertex colouring of G
containing at most k colours is called a k-colouring and if such a colouring exists, G is k-colourable..
Equivalently, a k-colouring of G = (V,E) is a function c : V → Zk where for any v, w ∈ V then
(v, w) ∈ E ⇒ c(v) ̸= c(w).

The following result, first proved by Alon and Tarsi in [AT93], gives an exact condition on when a
graph is k-colourable using the concept of the graph polynomial. This polynomial has been studied
since as early as 1891 by Peterson in [Pet91].

Definition 3.38. The graph polynomial fG ∈ C[x1, ..., xn] of a graph G = (V,E) where we enumerate
V = {vi}i∈[n] is given by

fG(x) :=
∏

(vi,vj)∈E
i<j

(xj − xi).

Theorem 3.39. Let G = (V,E) be a graph where we enumerate V = {vi}i∈[n]. Then G is not
k-colourable if and only if the graph polynomial fG ∈ ⟨xki − 1 : i ∈ [n]⟩.

We will provide a condensed proof by Alon from his paper where he introduced the Combinatorial
Nullstellensatz, [Alo99].

Proof. Let ω be a primitive kth root of unity in C. Then the following are equivalent:
• G is k-colourable,
• ∃ c : V → Zk, letting αi = c(vi), where (vi, vj) ∈ E implies αi ̸= αj ,
• ∀ (vi, vj) ∈ E we have αi − αj ̸= 0,
• ∀ (vi, vj) ∈ E we have ωαi − ωαj ̸= 0,
• ∃α ∈ Zn

k such that fG(ω
α1 , ..., ωαn) ̸= 0,

• fG ̸∈ ⟨xki − 1 : i ∈ [n]⟩,
where the last equality follows from Theorem 3.36 with gi(xi) := xki − 1.

However, we don’t have to stop at graphs, we can extend this type of result to hypergraphs.

Definition 3.40. A hypergraph H = (V,E) where V is a finite set of vertices and E is a collection of
sets of vertices or hyperedges ie. a hyperedge is a set ’connecting’ any number of vertices. For m ∈ N, a
hypergraph is m-uniform if each hyperedge contains precisely m vertices.

A proper vertex colouring of a hypergraph H is a labelling of its vertices such that no edge is
monochromatic. A proper vertex colouring containing at most k colours is called a k-colouring and if
such a colouring exists, H is k-colourable. Equivalently, k-colouring of H is a function c : V → Zk such
that for all hyperedges e ∈ E, for all possible ’colours’ A ∈ Zk, then {c(v) : v ∈ e} ≠ {A}.

It is now possible to give a similar result to Theorem 3.39, where we can give an exact condition on
when an m-uniform hypergraph is k-colourable. This result is given in Alon’s paper, [Alo99], for the
case k = 2,m = 3, however, the proof has been generalised in Alexandr’s thesis, [Ale19], to all k,m ∈ N
using a similar argument. We now generalise this further to any hypergraph, not just m-uniform ones,
by tightening Alexandr’s argument to give the following original result.
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Figure 3.2: The Moser spindle from [Mos61] (left) and the hypergraph of the Fano plane (right) are shown.
It is easy to check that the Moser spindle is not 3-colourable and the Fano plane is not 2-colourable.

Theorem 3.41. For k, n ∈ N, let ω be a primitive kth root of unity in C and let H = (V,E) be a
hypergraph where we enumerate the vertices V = {vi}i∈[n]. Now define a polynomial gH ∈ C[x1, ..., xn]
where

gH(x) =
∏
e∈E

∏
τ∈µk

((∑
vi∈e

xi

)
− |e|τ

)
Then H = (V,E) is not k-colourable if and only if gH ∈ ⟨xki − 1 : i ∈ [n]⟩.

Before we prove Theorem 3.41, we must first prove a technical Lemma in which we use facts specific
to roots of unity in C, which explains why we defined our polynomials over C.

Lemma 3.42. Let α ∈ Zn
k , A ∈ Zk and I ⊆ [n]. Then

∑
i∈I ω

αi = |I|ωA ⇔ αi = A for all i ∈ I.

Proof. Let |I| = m. The ⇐ direction follows trivially. For the ⇒ direction, notice that if |ωαj +ωαk | < 2

for some distinct j, k ∈ I then

m = |mωA| = |
∑
i∈I

ωαi | ≤ |ωαj + ωαk |+
∑

i∈I\{i,j}

|ωαi | = |ωαj + ωαk |+m− 2 < m

and thus |ωαj + ωαk | = 2. In addition, this means equality holds in the Cauchy-Schwarz Inequality
since 2 = |ωαj + ωαk | = |ωαj |+ |ωαk | = 2 and thus ωαj = ωαk , meaning αj = αk. Since j and k were
arbitrary, all αi are equal and mωA =

∑
i∈Ve

ωαi = mωα1 so αi = A for all i ∈ I.

Proof of Theorem 3.41. Let α ∈ Zn
k , e ∈ E and τ = ωA ∈ µk for some A ∈ Zk then we can apply

Lemma 3.42 to get
(∑

vi∈e ω
αi
)
− |e|τ =

(∑
vi∈e ω

αi
)
− |e|ωA ̸= 0 ⇔ ∃vi ∈ e such that αi ̸= A . Then

the following are equivalent:
• H is k-colourable,
• ∃ c : V → Zk, letting αi = c(vi), where ∀ e ∈ E,∀A ∈ Zk, {c(vi) : vi ∈ e} = {αi : vi ∈ e} ≠ {A},
• ∀ e ∈ E,∀A ∈ Zk, ∃vi ∈ e such that αi ̸= A,
• ∃α ∈ Zn

k such that gH(ωα1 , ..., ωαn) ̸= 0,
• gH ̸∈ ⟨xki − 1 : i ∈ [n]⟩,

where the last equality follows from Theorem 3.36 with gi(xi) := xki − 1.

Even with these results under our belt, it is still no easier to tell whether a given (hyper)graph is
k-colourable or not. As Alon notes in his concluding remarks of [Alo99], deciding whether a hypergraph
is not k-colourable is coNP-complete and there is (currently, at least) not an efficient way to check if
a polynomial is a member of an ideal, even if the ideal has a nice form. That being said, in Chapter
4, although we will find a similar correspondence, we will instead be able to prove that there is an
algorithm such that we can find a polynomial that does not lie in the ideal but still has the desired
coefficients, giving us tangible results.

36



Chapter 4

When can a matrix be unlocked...

Definition 4.1. Let the symmetric group Sn2 act on the n2 elements of a matrix M ∈ Mn(F) by
permutation. Then, M is unlocked by a set S ⊆ Sn2 if we can apply a sequence of group elements from
S to M after which M is invertible ie. M is unlocked by S if ∃σ ∈ ⟨S⟩ ⊆ Sn2 such that det(σ(M)) ̸= 0.

The motivation for this chapter comes from Chapters 1 and 2 of Brauch, Kézdy and Snevily’s
paper, [BKS14], where they first present the connection between bipartite graphs and the unlocking of
matrices over the complex numbers by rotating its rows. They present this idea as an algorithm for
determining whether a bipartite graph has a perfect matching by turning the problem into a question
about whether a matrix can be unlocked, which, in turn, can be solved in polynomial time using
matroids and Edmond’s Matroid Intersection Algorithm. By defining the bipartite graph first, they only
consider a small selection of matrices with coefficients in C. In the following chapter, we extend these
ideas to work for any matrix and over any field, and also introduce a new criterion on when a matrix is
unlocked by rotating is rows in the case that the character of the field we’re working over divides the
width of the matrix. We then introduce the original notions of cluster, minimal clusters and cluster
density derived from the notion of the deficiency of a bipartite graph and use these to give an exact
condition on when n2 elements can form an invertible n× n matrix, equivalently when a matrix can be
unlocked by all permutations in Sn2 . We are unsure whether a proof of this condition currently exists.
Finally, we prove that the same conditions hold for a matrix being unlocked by permutations of both
its rows and columns, and finish by looking at the theorem by Kézdy and Snevily in [KS04] which puts
the ideas in [BKS14] in context and provides many more avenues that could be explored in the future.

4.1 ...by rotations of its rows?

We will first study what happens when we restrict ourselves to cyclically permuting (or rotating) the
rows of a matrix M ∈ Mn(F).

Notation 4.2. For α ∈ Zn
n, we denote M [α] := (Mi j+αi (modn)) ie. the matrix where we rotate the

ith row by αi positions. Letting ei denote the standard ith basis vector, if we let ri(M) := M [ei] then
ri ∈ Sn2 and for R := {ri : i ∈ [n]} ⊆ Sn2 , then ⟨R⟩ = {

∏
i∈[n] r

αi
i : α ∈ Zn

n} ⊆ Sn2 since all ri commute.
In the language of Definition 4.1, we say M is unlocked by R or just M can be unlocked by rotations

of its rows if and only if ∃σ ∈ ⟨R⟩ such that det(σ(M)) ̸= 0. This is equivalent to the existence of
α ∈ Zn

n such that det(M [α]) ̸= 0.
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Example 4.3. The matrix π =

3 −1 −4

1 5 −9

2 −6 5

 ∈ M3(Q) can be unlocked by row rotations as even though

det(π) = 0, r3(π) = π[e3] =

 3 −1 −4

1 5 −9

−6 5 2

 has determinant −27. γ =

 2 −7 5

−3 −8 11

2 0 −2

 ∈ M3(Q),

however, can not be unlocked by row rotations ie. det(σ(γ)) = 0 for all σ ∈ ⟨R⟩. This is simply due to
the fact that the digits in each row of γ add up to 0. An easy way to see that this is the case is that
(1, 1, 1) is an eigenvector of σ(γ) with eigenvalue 0 for all σ ∈ ⟨R⟩. Since the determinant of a matrix is
equal to the product of its eigenvalues then det(σ(γ)) = 0 for all σ ∈ ⟨R⟩. But, as we will see, the rows
of a matrix all adding up to 0 is not a necessary condition for a matrix not to be able to be unlocked by
row rotations.

Definition 4.4. Given a matrix M ∈ Mn(F), for i ∈ [n], define gi ∈ F[xi] by

gi(xi) :=

n∑
j=1

Mi jx
j−1
i .

Letting Vn be the n× n Vandermonde matrix as in Definition 3.29, define fM ∈ F[x1, ..., xn] as

fM (x) := (detVn)(x)

n∏
k=1

gk(xk) =
∏

1≤i<j≤n

(xj − xi)

n∏
k=1

gk(xk)

While the definition of our key polynomial fM may look fairly arbitrary, its key features are that it
contains all the information about our matrix M , both its elements and their positions, and also that it
vanishes on any input x = (x1, ..., xn) where xi = xj for some i ̸= j.

We now prove a technical lemma.

Lemma 4.5. For permutations σ, β ∈ Sn, if σ(i) + β(i) ≡ k (modn) for all i ∈ [n], then sgn(σ) =

(−1)(n−1)k+⌊n−1
2

⌋ sgn(β).

Proof. For permutations τ, β ∈ Sn, we can restate the condition that τ(i) + β(i) ≡ 0 (modn) for all
i ∈ [n] in terms of permutations by adding in transpositions as such

τ = (1, n− 1)(2, n− 2)...(⌊n− 1

2
⌋, n− ⌊n− 1

2
⌋)β =

⌊n−1
2

⌋∏
j=1

(j, n− j)

β

We need ⌊n−1
2 ⌋ transpositions since for n odd, every element except n gets swapped ie. n−1

2 = ⌊n−1
2 ⌋

swaps whereas for n even, every element except n and n
2 gets swapped ie. n−2

2 = ⌊n−1
2 ⌋ swaps.

Finally, setting σ = (1, ..., n)kτ implies σ(i) ≡ τ(i) + k (modn) so σ(i) + β(i) ≡ k (modn) for all
i ∈ [n]. Thus,

sgn(σ) = sgn

(1, ..., n)k
⌊n−1

2
⌋∏

j=1

(j, n− j)β

 = sgn(1, ..., n)k
⌊n−1

2
⌋∏

j=1

sgn(j, n− j) sgn(β)

= (−1)(n−1)k+⌊n−1
2

⌋ sgn(β)

since sgn((1, ..., n)) = (−1)n−1.

The following Lemma is an extension of part of Theorem 2 from [BKS14], however, the factor of
(−1)⌊

n−1
2

⌋ is missed in the original paper which we amend here.
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Lemma 4.6. Given a matrix M ∈ Mn(F), then

fM (x) ≡ (−1)⌊
n−1
2

⌋
∑
α∈Zn

n

det(M [α])xα mod⟨xni − 1 : i ∈ [n]⟩

Proof. Working modulo the ideal ⟨xni − 1 : i ∈ [n]⟩, we notice that

x−α
n∏

i=1

gi(xi) =

n∏
i=1

x−αi
i gi(xi) =

n∏
i=1

n∑
j=1

Mi jx
j−1−αi
i =

n∏
i=1

n−αi∑
j=1−αi

(M)i j+αix
j−1
i

=

n∏
i=1

n−αi∑
j=1−αi

(M [α])i j (modn)x
j−1
i ≡

n∏
i=1

n∑
j=1

(M [α])i jx
j−1
i =

∑
β∈Zn

n

n∏
i=1

xβi−1
i (M [α])i βi

and using the Leibniz determinant formula, Lemma 3.32,

(detVn)(x) =
∑
σ∈Sn

sgn(σ)
n∏

k=1

(Vn)k σ(k) =
∑
σ∈Sn

sgn(σ)
n∏

k=1

x
σ(k)−1
k

so

x−αfM (x) ≡

(∑
σ∈Sn

sgn(σ)
n∏

k=1

x
σ(k)−1
k

)∑
β∈Zn

n

n∏
i=1

xβi−1
i (M [α])i βi

 (4.1)

By comparing coefficients, we can see it is enough to show that, for any α ∈ Zn
n, the constant term of

x−αfM (x) modulo the ideal ⟨xni −1 : i ∈ [n]⟩ is equivalent to (−1)⌊
n−1
2

⌋ det(M [α]). Looking at Equation
4.1, the constant term of x−αfM (x) is given by the sum of sgn(σ)

∏
i∈[n](M [α])i βi

for σ ∈ Sn, β ∈ Zn
n

where σ(k)− 1 ≡ −βk − 1 (modn), equivalently σ(k) ≡ −βk (modn) for all k ∈ [n]. The only β ∈ Zn
n

that fulfil this are permutations of Sn since βk ≡ −σ(k) (modn) are distinct for all k ∈ [n] since σ ∈ Sn.
Using Lemma 4.5 with k = 0, the constant term of x−αfM (x) is thus

∑
σ∈Sn
β∈Zn

n
σ(k)≡−βk

sgn(σ)

n∏
i=1

(M [α])i βi
=

∑
σ,β∈Sn

σ(i)+β(i)≡0

sgn(σ)

n∏
i=1

(M [α])i β(i)

= (−1)⌊
n−1
2

⌋
∑
β∈Sn

sgn(β)

n∏
i=1

(M [α])i β(i) = (−1)⌊
n−1
2

⌋ det(M [α]).

Corollary 4.7. Given a matrix M ∈ Mn(F), then M is not unlocked by row rotations if and only if
fM (x) ∈ ⟨xni − 1 : i ∈ [n]⟩.

Remark 4.8. Given a matrix M which can be unlocked by row rotations, Theorem 4.6 actually implies
that calculating the polynomial expansion of fM (x)mod⟨xni − 1 : i ∈ [n]⟩ automatically tells us which
group elements in ⟨R⟩ ⊆ Sn2 it is possible to unlock the matrix for. Simply find those α ∈ Zn

n with
non-zero coefficients in fM (x)mod⟨xni − 1 : i ∈ [n]⟩ and then

∏
i∈[n] r

αi
i unlocks the matrix.

As mentioned in Section 3.7, we now have to consider two cases which depend on whether the
character of our field F divides the size of our matrix due to the number of roots of unity in each case.

Case 1: We now study matrices M ∈ Mn(F) where char(F)|n.
When char(F)|n, we have µn = {1} as (x − 1)n =

∑n
i=0

(
n
i

)
(−1)ixn−i = xn − 1 since n|

(
n
i

)
for

1 ≤ i ≤ n− 1 and char(F)|n. Following Bruen in [Bru92], we define the multiplicity of an element in a
polynomial over any field.
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Definition 4.9. For non-zero polynomial g ∈ F[x1, ..., xn], then g(x) has multiplicity t at a ∈ Fn if

t = min{
n∑

i=1

αi : α ∈ Nn
0 , cα ̸= 0} where g(x+ a) =

∑
α∈Nn

0

cαx
α

For convenience, if g(x) = 0, we say g(x) has multiplicity ∞ for all a ∈ Fn.

Example 4.10. Let n = 1 and g ∈ F[t]. Then g has multiplicity k at a ∈ F if g(t+a) =
∑deg(g)

i=0 cit
i and

k = min{i : ci ̸= 0}. It is clear that this aligns with the usual notion of multiplicity since if (t− a)k|g(t),
then tk|g(t+ a).

With Bruen’s notion of multiplicity for multi-variable polynomials in hand, using Corollary 4.7,
we can now prove an exact condition on when a matrix is unlocked by row rotations in the case that
char(F)|n.

Theorem 4.11. Let M ∈ Mn(F) be a matrix where char(F)|n with corresponding polynomials gi(xi)

for i ∈ [n]. Define the sequence (ni)i∈[n], where gi(xi) has multiplicity ni at 1. Then, M is unlocked by
row rotations if and only if there is a permutation σ ∈ Sn such that ni < σ(i) for all i ∈ [n].

Proof. We start by proving ∀σ ∈ Sn, ∃ i ∈ [n] such that ni ≥ σ(i) ⇔ fM (x+ 1n) ∈ ⟨xni : i ∈ [n]⟩ where
1n := (1, ..., 1). For the ⇒ direction, using the properties of the determinant of the Vandermonde matrix
Vn from Lemma 3.31, we have

(detVn)(x+ 1n) =
∏

1≤i<j≤n

(xj + 1− xi − 1) =
∏

1≤i<j≤n

(xj − xi) = (detVn)(x)

Also, from the definition of the ni as multiplicities of the gi, we have gi(xi + 1) = hi(xi)x
ni
i for some

hi ∈ F[xi] where the hi have a non-zero constant term. Thus, using the Leibniz formula for the
determinant, Lemma 3.32, we have

fM (x+ 1n) = (detVn)(x+ 1n)

n∏
i=1

gi(xi + 1) = (detVn)(x)

n∏
i=1

hi(xi)x
ni
i

=

(∑
τ∈Sn

sgn(τ)
n∏

i=1

x
τ(i)−1
i

)
n∏

i=1

hi(xi)x
ni
i =

∑
τ∈Sn

sgn(τ)
n∏

i=1

x
ni−1+τ(i)
i hi(xi)

= (−1)n−1+⌊n−1
2

⌋
n∏

i=1

hi(xi)

(∑
σ∈Sn

sgn(σ)

n∏
i=1

x
n+ni−σ(i)
i

)

where σ ∈ Sn is defined by σ(i) = (n + 1) − τ(i) for all i ∈ [n] and where we use Lemma 4.5 with
k = 1 for the (−1)n−1+⌊n−1

2
⌋. It is now clear that if ∀σ ∈ Sn, ∃ i ∈ [n] such that ni ≥ σ(i) then

fM (x+ 1n) ∈ ⟨xni : i ∈ [n]⟩.
To prove the ⇐ direction, we define a process. For some Q ⊆ Sn, define

f (Q)(x) = (−1)n−1+⌊n−1
2

⌋
n∏

i=1

hi(xi)

 ∑
σ∈Sn\Q

sgn(σ)

n∏
i=1

x
n+ni−σ(i)
i


and assume f (Q)(x) ∈ ⟨xni : i ∈ [n]⟩. Now let d = min{

∑
i∈[n] n + ni − σ(i) : σ ∈ Sn\Q} and

Q′ = {σ ∈ Sn\Q :
∑

i∈[n] n+ ni − σ(i) = d}. Then since the hi all have a non-zero constant term, the

sum of monomials of f (Q)(x) with degree d is given by a multiple of
∑

σ∈Q′ sgn(σ)
∏

i∈[n] x
n+ni−σ(i)
i .

Since Q′ is non-empty this sum is non-zero and thus f (Q)(x) ∈ ⟨xni : i ∈ [n]⟩ implies ∀σ ∈ Q′, ∃ i ∈ [n]
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such that ni ≥ σ(i). In addition, f (Q)(x) ∈ ⟨xni : i ∈ [n]⟩ ⇒ f (Q∪Q′)(x) ∈ ⟨xni : i ∈ [n]⟩ where
|Q ∪Q′| > |Q| and thus we can set Q = Q ∪Q′ and repeat the process.

We kick off the first iteration of this process by setting Q = ∅. Then since the size of Q strictly
increases with each iteration, Sn is finite and fM (x+ 1n) = f (∅)(x) ∈ ⟨xni : i ∈ [n]⟩, we prove ∀σ ∈ Sn,
∃ i ∈ [n] such that ni ≥ σ(i).

Forming a chain of equalities, ∀σ ∈ Sn, ∃ i ∈ [n] such that ni ≥ σ(i) ⇔ fM (x+ 1n) ∈ ⟨xni : i ∈ [n]⟩
⇔ fM (x) ∈ ⟨(xi − 1)n : i ∈ [n]⟩ = ⟨xni − 1 : i ∈ [n]⟩ ⇔ M is not unlocked by row rotations by Corollary
4.7.

Example 4.12.

−1 1 0

−1 0 1

0 −1 1

 ∈ M3(F3) can not be unlocked by row rotations, since each row adds

up to 0 and thus any polynomial with coefficients given by elements in a row will have 1 as a root so
ni ≥ 1 for all i ∈ [n]. Then, for any σ ∈ Sn, taking σ(i) = 1 then ni ̸< σ(i) = 1 so by Theorem 4.11,
the matrix can not be unlocked. Thus, it is easy to see that, in general, the rows adding up to 0 is a
sufficient condition for a matrix to not be unlocked by row rotations. However, it is not a necessary

condition. Take


1 2 0 −1 0

1 −1 2 0 −2

2 1 −1 −2 −2

2 −1 0 1 −2

1 0 −1 −2 2

 ∈ M5(F5), which cannot be unlocked by row rotations since

the multiplicities at 1 are (0, 3, 0, 3, 3) but rows 1 and 3 don’t add up to 0.

Case 2: We now study matrices M ∈ Mn(F) where char(F) ∤ n.

Lemma 4.13. For n ∈ N, let F be a field where char(F) ∤ n. Then, tn − 1 =
∏

τ∈µn
(t− τ).

Proof. Consider the roots of xn − 1 in F. Seeking a contradiction, assume |µn| < n. Then ∃α ∈ µn

such that xn − 1 = (x − α)2g(x). Taking the formal derivative on both sides, D((x − α)2g(x)) =

(x−α)2D(g(x)) + 2(x−α)g(x) = D(xn − 1) = nxn−1 = and plugging in α, we get 0 = nαn−1 = n
α ̸= 0

which is a contradiction.

Lemma 4.14. For n ∈ N, let F be a field where char(F) ∤ n. Then, given f ∈ F[x1, ..., xn], f ∈ ⟨xni − 1 :

i ∈ [n]⟩ if and only if µn
n ⊆ Z(f)[F] ie. f(x) = 0 for all x ∈ µn

n.

Proof. This follows by Theorem 3.36 using gi(xi) = xni − 1 which factorises as gi(xi) =
∏

ω∈µn
(xi − ω)

by Lemma 4.13.

Definition 4.15. Given a matrix M ∈ Mn(F), where char(F) ∤ n, with corresponding polynomials gi(xi),
define the bipartite graph GM with vertices V (GM ) = ([n], µn) and edges given by (i, ωj) ∈ E(GM ) if
and only if ωj /∈ Z(gi)[F] for all i, j ∈ [n], where ω is a generator of µn.

The following lemma is a generalisation of part of Theorem 2 from [BKS14] to any matrix over any
field where char(F) ∤ n. We recall the notion of a perfect matching from Definition 1.17.

Lemma 4.16. Given a matrix M ∈ Mn(F) with corresponding polynomial fM (x) and graph GM , there
exists a perfect matching on GM if and only if µn

n ̸⊆ Z(fM )[F] ie. fM (x) ̸= 0 for some x ∈ µn
n.

Proof. Let ω be a generator of µn. For the ⇒ direction, let the perfect matching be given by (i, ωσ(i)) ∈
E(GM ) for some σ ∈ Sn. Then by the definition of GM , Definition 4.15, ωσ(i) ̸∈ Z(gi)[F] for all
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i ∈ [n]. Thus since σ is a permutation and using Lemma 3.31, then detVn(ω
σ(1), ..., ωσ(n)) ̸= 0,

thus fM (ωσ(1), ..., ωσ(n)) ̸= 0. For the ⇐ direction, assume fM (x) ̸= 0 for some x ∈ µn
n, then since

(detVn)(x) ̸= 0, again using Lemma 3.31, then x = (ωσ(1), ..., ωσ(n)) for some σ ∈ Sn a permutation.
Thus, for all i ∈ [n], ωσ(i) ̸∈ Z(gi)[F] ⇔ (i, ωσ(i)) ∈ E(GM ) and since σ is a permutation, this is a
perfect matching on GM .

The equivalent of Theorem 4.17 for the case char(F) ∤ n now falls out.

Theorem 4.17. Given a matrix M ∈ Mn(F) where char(F) ∤ n with corresponding graph GM , then M

is unlocked by row rotations ⇔ there exists a perfect matching on GM .

Proof. By Corollary 4.7, Lemma 4.14 and Lemma 4.16, M is unlocked by row rotations ⇔ fM ̸∈
⟨xni − 1 : i ∈ [n]⟩ ⇔ µn

n ̸⊆ Z(fM )[F] ⇔ there exists a perfect matching on GM .

Example 4.18. We can now see another reason why the matrix γ =

 2 −7 5

−3 −8 11

2 0 −2

 ∈ M3(R) from

Example 4.3, or indeed any matrix where the rows add up to 0 can not be unlocked by row rotations. We
can construct a polynomial with coefficients given by a row of the matrix; if the coefficients add up to
0, then the polynomial has a root at 1. If this is the case for every row, then when we construct our
bipartite graph GM , (i, 1) ̸∈ E(G) for any i ∈ [n]. Thus, by the pigeonhole principle, it is impossible for
GM to have a perfect matching, otherwise there would have to be an edge connected to 1 ∈ µn.

For a slightly more complicated example, let F = F3, and take µ =


0 1 0 1

−1 −1 −1 −1

−1 1 0 −1

1 −1 1 −1

 ∈ M4(F3).

You would have to calculate at most 4! = 24 determinants to find out if µ can be unlocked by rotations,
however, luckily for us we have some theorems we can use.

Instead of taking the full closure of F3, it is enough to let θ2+1 = 0 and work in F9 = F3[θ] since F9

contains Ω4 as F×
9
∼= Z8. Then notice that polynomials g1(x1) = x31 + x1, g2(x2) = −x32 − x22 − x2 − 1,

g3(x3) = −x33+x3− 1 and g4(x4) = −x34+x24−x4+1 all have θ and −θ as roots. Thus Gµ, as depicted
in Figure 4.1, does not have a perfect matching since only 3 is connected to θ and −θ and thus by
Theorem 4.17, µ can not be unlocked by row rotations.

µ4

[4] 1 2 3 4

1 θ −1 −θ

Figure 4.1: The bipartite graph Gµ corresponding to matrix µ from Example 4.18.

Remark 4.19. It seems that whether char(F) divides n or not gives rather different conditions on
when the matrix can be unlocked by row rotations. However, these two cases are not so dissimilar
if we reformulate the case char(F)|n. The constraint given in Theorem 4.11 was that M ∈ Mn(F)
was unlocked by row rotations if and only if there was a permutation σ ∈ Sn such that ni < σ(i) for
i ∈ [n] where (ni)i∈[n] was given by gi(xi) having multiplicity ni at 1. Similarly to Definition 4.15,
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where we defined GM , we can define a graph HM with vertices given by V (HM ) = ([n], [n]) and edges
(i, j) ∈ E(HM ) if and only if ni < j for all i, j ∈ [n]. Clearly ∃σ ∈ Sn such that ni < σ(i) for all i ∈ [n]

⇔ (i, σ(i)) ∈ E(HM ) ⇔ HM has a perfect matching since σ is a permutation. In some sense, we see
that Theorem 4.11 (the char(F)|n case) is not as strong a statement as Theorem 4.17 (the char(F) ∤ n
case), since we can construct matrices M such that GM is any bipartite graph whereas this is not true
for HM , since for any edge (i, j) ∈ E(HM ), we automatically have (i, j′) ∈ E(HM ) for all j′ ≥ j. This
will result in a more difficult proof of the more general versions of Theorem 4.11 and Theorem 4.17,
where we want to prove the forms of matrices which are unlocked by the set of all permutations.

4.2 ...by all permutations?

We now have an exact condition on when a matrix is unlocked by row rotations. But what happens if
we allow ourselves to rotate both the rows and columns as we please in any order? What if we allow
any permutation of the elements of the matrix? It turns out that the latter question will help us answer
the former, so we tackle that first.

We will first give an exact condition on when a matrix is unlocked by all permutations for the easier
char(F)|n case, as a warm-up for the trickier char(F) ∤ n case.

Theorem 4.20. For n ≥ 2, given n2 elements in a field F with char(F)|n, where there are at most
n2 − n+ 1 of the same element or at most n2 − n zeroes, we can always construct an invertible n× n

matrix out of those elements.

Before we prove Theorem 4.20, we must first prove some technical lemmas.

Lemma 4.21. For n ≥ 1, given a polynomial p ∈ F[t] with degree at most n − 1, Z(p)[F] ∩ µn is
invariant under cyclic permutations (rotations) of the coefficients of p(t).

Proof. The statement of this Lemma is equivalent to ω ∈ Z(p(t))[F] ⇔ ω ∈ Z(tkp(t)mod ⟨tn − 1⟩)[F] for
all k ∈ [n], ω ∈ µn. Writing, tkp(t)mod ⟨tn − 1⟩as tkp(t) + (tn − 1)q(t) for some q ∈ F[t], and evaluating
at ω, we get ωkp(ω) + (ωn − 1)q(ω) = ωkp(ω) and the result follows since ωk ̸= 0, ∀ k ∈ [n].

Lemma 4.22. For n ≥ 2, given a polynomial p ∈ F[t], let p(t) =
∑n−1

i=0 ait
i. For some b0 ∈ F where

b0 ̸= a0, let p̂(t) =
∑n−1

i=1 ait
i + b0. Then p(t) and p̂(t) share no roots in F ie. Z(p)[F] ∩ Z(p̂)[F] = ∅.

Proof. We have p(t) − p̂(t) = a0 − b0 ≠ 0, thus p(t) and p̂(t) share no common values, in particular
share no roots.

Corollary 4.23. Given a matrix M with corresponding sequence of multiplicities (ni)i∈[n], if for
i, j ∈ [n], 0 < ni, nj ≤ n− 1, after swapping distinct elements of M , one from row i and one from row
j, the new matrix will have multiplicities ni = nj = 0.

Proof. Let αi, αj be the elements to be swapped in rows i, j respectively. Since ni, nj > 0, then
1 ∈ Z(gi), Z(gj). We start by rotating rows i, j, thus cyclically permuting the coefficients of gi, gj until
αi, αj are the constant coefficients in gi, gj respectively ie. αi, αj are in the first column of M . By
Lemma 4.21, 1 is still a root of gi and gj . Using Lemma 4.22 on both polynomials gi, gj separately, when
we swap αi, αj , 1 ̸∈ Z(gi), Z(gj). Finally, we can rotate rows i, j until αi is in the old position of αj

and αj is in the old position of αi and, using 4.21, even after these rotations, 1 ̸∈ Z(gi), Z(gj). The new
matrix is just M with αi and αj swapped but since 1 ̸∈ Z(gi), Z(gj) in the new matrix, ni = nj = 0.
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We will now prove Theorem 4.20. We start by arranging the n2 elements in a matrix M (we can’t
guarantee M is invertible). We then swap a series of elements between rows until we can guarantee
that the matrix is able to be unlocked by row rotations using our exact statement on when a matrix
can be unlocked, Theorem 4.11. Finally, we can perform the relevant row rotations, leaving us with an
invertible matrix made from the n2 elements. Even though we are performing changes to the matrix M

we will not keep track of these and will continually denote our matrix M .

Proof of Theorem 4.20. Since we have at most n2 − n+ 1 of the same element, we can always arrange
the n2 elements in a matrix M such that at most 1 row contains n copies of the same element and no
row contains all zeroes. The condition that at most 1 row contains n copies of the same non-zero element
implies that there is at most i ∈ [n] such that ni = n− 1. This is because the polynomial with all entries
the same and non-zero is equal to a multiple of xn−1 + xn−2 + ...+ x+1 = xn−1

x−1 = (x−1)n

x−1 = (x− 1)n−1.
The condition that no row contains all zeroes implies that every ni is finite and since deg(gi(xi)) ≤ n−1,
ni ≤ n− 1 for all i ∈ [n].

We will now swap distinct elements from distinct rows, until all but one ni = 0 for i ∈ [n]. Given
two rows i, j ∈ [n] with multiplicities 0 < ni, nj ≤ n− 1, we can always find two distinct elements, one
from each row, since at most one row contains n copies of the same element. By Corollary 4.23, after
swapping these elements, ni = nj = 0. It is important to note that, in doing this, we never create a row
which contains n copies of the same element and thus we can always guarantee that at most one row of
the matrix M has n copies of the same element.

We repeat this process until there is at most one row i ∈ [n] with ni ̸= 0. It is clear no elements
have been swapped in row i since otherwise ni = 0. However, since ni ≤ n− 1 to start off with, we can
choose any σ ∈ Sn with σ(i) = n and since all other nj = 0, nj < σ(j) for all j ∈ [n]. Thus, by Theorem
4.11, M is unlocked by row rotations. Thus, by applying the necessary swaps and row rotations to our
starting matrix we constructed an invertible matrix out of our original n2 elements.

Unfortunately, due to the more complex condition involving perfect matchings on bipartite graphs
for the case when char(F) ∤ n, we will not be able to prove the same statement as in Theorem 4.20
straight away. Instead, we must state Hall’s marriage, an exact condition on when bipartite graphs have
perfect matchings, and introduce the key concepts of clusters, minimal clusters and cluster density.

Hall’s Marriage Theorem

First proved by Hall in [Hal86], Hall’s marriage theorem gives an exact condition on when a bipartite
graph has a perfect matching. According to [Hir07], it supposedly got its name from one of the many
ways the theorem can be posed: suppose we have a group of boys and girls, where we need to find
all the boys a partner from the group of girls. We can start by asking the girls to write a list of the
boys they find acceptable and we assume the boys will not turn down a date with a girl. Given this
information, can we match the boys and girls up in happy couples?

Definition 4.24. We recall from Definition 1.17, that a perfect matching on a graph G is a subset of
the edge set S ⊆ E(G) such that every vertex in V (G) is contained in some edge in S. Now let G be
a bipartite graph with vertices V (G) = (A,B). Then, we define an A−perfect matching on G to be a
subset of the edge set S ⊆ E(G), such that every vertex of A is contained in some edge in S.

Remark 4.25. For a bipartite graph G with vertices V (G) = (A,B), if |A| = |B|, G has an A−perfect
matching ⇔ G has a B−perfect matching ⇔ G has a perfect matching.
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We now state but do not prove Hall’s Theorem. A good proof is found in [DeV] using the theory of
M -alternating and M -augmenting paths.

Theorem 4.26 (Hall’s marriage theorem). Given a bipartite graph G with vertices V (G) = (A,B),
there exists an A−perfect matching on G ⇔ |W | ≤ |NG(W )| for all W ⊆ A.

Definition 4.27. Given a family of sets F , let FX =
⋃

S∈F S. Then, a transversal of F is a subset of
FX which contains exactly one distinct element from every set S ∈ F .

Corollary 4.28. A family of sets F has a transversal ⇔ for all G ⊆ F , |G| ≤ |GX |.

Proof. Given a family of sets F , construct a bipartite graph GF with vertices V (GF ) = (FX ,F). Then
for all elements s ∈ S, for all sets S ∈ F , let (s, S) ∈ E(GF ). It is now clear that F has a transversal ⇔
GF has an F−perfect matching ⇔ |W | ≤ |NGF (W )| for all W ⊆ F ⇔ |G| ≤ |GX | for all G ⊆ F .

Example 4.29. [Hir07] Given a standard deck of 52 cards, split the cards into 13 piles of 4 cards. Can
we always pick one card from every pile such that we pick exactly one card of each rank1?

Let F be the family of sets where each set contains all the ranks of cards in a corresponding pile.
Since there are only 4 cards of every rank and all piles contain 4 cards, by the pigeonhole principle,
we must have that for any selection of k piles, there are at least k different cards contained in those
piles. Then Corollary 4.28 tells us that F has a transversal ie. there is a way to pick exactly one card
from each pile such that no two cards are the same rank, and since there are 13 piles and 13 ranks this
implies every card we choose has a distinct rank.

We now introduce some notions that tie in closely with Hall’s Marriage Theorem and perfect
matchings, the first being the deficiency of a bipartite graph, originally defined by Ore in [Ore55].

Definition 4.30. Given a bipartite graph G with vertices V (G) = (A,B), the deficiency of a set
U ⊆ V (G), is defined to be defG(U) := |U | − |NG(U)|. Furthermore, the deficiency of G with respect to
A is defined to be def(G;A) := maxU⊆A defG(U). Note that defG(∅) = 0 so we have that def(G;A) ≥ 0.
Finally, if |A| = |B|, the deficiency of G is defined to be def(G) := def(G;A) = def(G;B).

Lemma 4.31. For a bipartite graph G where |A| = |B|, then def(G;A) = def(G;B).

Proof. For a set U ⊆ A, by Definition 4.30, we have

defG(U) = |U | − |NG(U)| = |A| − |A\U | − |B|+ |B\NG(U)|

≤ −|NG(B\NG(U))|+ |B\NG(U)| = defG(B\NG(U)).

Thus def(G;A) ≤ def(G;B), so by symmetry of swapping A and B, def(G;A) = def(G;B).

We now define the original notions of clusters, minimal clusters and cluster density.

Definition 4.32. Let G be a bipartite graph with vertices V (G) = (A,B). We define a cluster
in G to be a set W ⊆ A where defG(W ) > 0 ie. |W | > |NG(W )|. Furthermore we say that a
cluster W ⊆ A is minimal if there does not exist a set U ⊂ W ⊆ A which is again a cluster. Let
clust(G;A) = {W ⊆ A : defG(W ) > 0} ie. the set of clusters in G and define the cluster density to be
cd(G;A) :=

∑
W∈clust(G;A) defG(W ).

1Every playing card contains precisely one symbol from the set {A, 2, ..., 10, J,Q,K} which is its rank.
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Remark 4.33. It is easy to see, using Hall’s Marriage Theorem, Theorem 4.26, and Definition 4.30
and Definition 4.32, for a bipartite graph G with vertices V (G) = (A,B), the following are equivalent:

• G has an A−perfect matching,
• |W | ≤ |NG(W )| for all W ⊆ A,
• defG(W ) ≤ 0 for all W ⊆ A,
• def(G;A) = 0,
• cd(G;A) = 0.

We can finally return to our study of matrices and state the equivalent of Theorem 4.20 but now for
the case char(F) ∤ n, which has a similar but substantially harder proof. We will then be able combine
it with Theorem 4.20 to give an exact statement on when all matrices are unlocked by all permutations.

Theorem 4.34. For n ≥ 3, given n2 elements in a field F with char(F) ∤ n, where there are at most
n2 − n+ 1 of the same element or at most n2 − n zeroes, we can always construct an invertible n× n

matrix out of those elements.

Before we prove Theorem 4.34, we will need some technical lemmas. These aim to show that, by
swapping elements of a matrix M , we can strictly reduce the cluster density of the corresponding
bipartite graph GM and, in some sense, remove clusters until we are guaranteed to be left with a
bipartite graph which has a perfect matching, meaning M can be unlocked by row rotations.

Definition 4.35. Let G be a bipartite graph with vertices V (G) = (A,B). We will now define a set of
graphs, depending on some point p ∈ A and denoted Tp(G) which we refer to as transformed graphs. A
graph G′ ∈ Tp(G) if:

• V (G′) = (A,B) ie. G′ has the same vertices as G,
• (p, b) /∈ G ⇒ (p, b) ∈ G′ for all b ∈ B,
• (q, b) ∈ G ⇔ (q, b) ∈ G′ for all q ∈ A\{p}.

For a set of bipartite graphs S, let Tp(S) := ∪G∈STp(G).

Lemma 4.36. Let G be a bipartite graph with vertices V (G) = (A,B) where |A| = |B|. Let W be a
minimal cluster in G, then for any p ∈ W , for all G′ ∈ Tp(G), cd(G′;A) < cd(G;A).

Proof. Let p ∈ W and G′ ∈ Tp(G). Then we aim to show that any set W ′ ⊆ A where p ∈ W ′ is not a
cluster in G′.

• Letting Q = (W ∩W ′)\{p}, then Q is not a cluster in G since otherwise W would not be minimal
as Q ⊆ W . Thus |NG(Q)| ≥ |Q|.

• We now claim NG(Q)⊔ (µn\NG(W )) ⊆ NG′(W ′). Since (q, b) ∈ G ⇔ (q, b) ∈ G′ for all q ∈ A\{p}
and p /∈ Q, then NG(Q) = NG′(Q) ⊆ NG′(W ′) as Q ⊆ W ′. Furthermore, since (p, b) /∈ G⇒ (p, b) ∈
G′ for all b ∈ B and p ∈ W,W ′, we also have that µn = NG({p})∪NG′({p}) ⊆ NG(W )∪NG′(W ′),
and thus (µn\NG(W )) ⊆ NG′(W ′) showing NG(Q)∪ (µn\NG(W )) ⊆ NG′(W ′). Finally, NG(Q)∩
(µn\NG(W )) ⊆ NG(W ) ∩ (µn\NG(W )) = ∅ and thus |NG′(W ′)| ≥ |NG(Q)|+ |µn\NG(W )|.

• Since W is a cluster, we know |W | > |NG(W )|, so as W ⊆ [n] and NG(W ) ⊆ µn, |µn\NG(W )| =
n− |NG(W )| > n− |W | = |[n]\W | ≥ |W ′\W |. Thus |µn\NG(W )| ≥ |W ′\W |+ 1.

Since |NG′(W ′)| ≥ |NG(Q)| + |µn\NG(W )| ≥ |Q| + |W ′\W | + 1 = |W ∩ W ′| − 1 + |W ′\W | + 1 =

|W ′\W | + |W ′ ∩ W | = |W ′| then W ′ is not a cluster. Finally, let U ∈ clust(G′;A). By the above,
p ̸∈ U , so since (q, b) ∈ G ⇔ (q, b) ∈ G′ for all q ∈ A\{p} then defG′(U) = |U | − |NG′(U)| =

|U | − |NG(U)| = defG(U). Also, since p ∈ W , W ̸∈ clust(G′;A) but W ∈ clust(G;A) and thus
cd(G′;A) =

∑
U∈clust(G′;A) defG′(U) <

∑
U∈clust(G;A) defG(U) = cd(G′;A).
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Remark 4.37. It is interesting to note that Lemma 4.36 would not necessarily hold if we just required
the point p to be in a cluster and not a minimal cluster.

We now need to build up some results about how swapping elements in our matrix M affects the
corresponding bipartite graph GM

Lemma 4.38. For n ≥ 2, given a polynomial p ∈ F[t], let p(t) =
∑n−1

i=0 ait
i. Consider the polynomial

where we swap the first two entries ie. p̂(t) =
∑n−1

i=2 ait
i + a0t + a1. Then, if a0 ̸= a1, p(t) and p̂(t)

share no roots except for t = 1 ie. Z(p)[F] ∩ Z(p̂)[F] ∈ {∅, {1}}.

Proof. The result follows by considering p(t)− p̂(t) = (a1 − a0)(t− 1) and using a0 ̸= a1. Thus, p(t)
and p̂(t) share no common values, in particular no common roots, unless t = 1.

Lemma 4.39. Given a matrix M and bipartite graph GM , if M ′ is the matrix where we replace any
element in row i ∈ [n] with a different element, then GM ′ ∈ Ti(GM ).

Proof. Let M have corresponding polynomials gi(xi) =
∑

i∈[n]Mi jx
j−1
i for all i ∈ [n] and let α be

the element we want to replace which is in position (i, j). Let M̂ := rj−1
i (M) ie. the matrix where

we can rotate the elements in the ith row so that α is now in position (i, 1) and thus acts as the
constant of gi(xi). By Lemma 4.21, this does not change Z(gi)[F] ∩ µn, thus GM̂ = GM . Now, let M

be the matrix where we replace α with α′. By Lemma 4.22, if gi(xi) =
∑

i∈[n]M i jx
j
i , since α ̸= α′

then Z(gi)[F] ∩ Z(gi)[F] ∩ µn = ∅, thus in GM the vertex i ∈ [n] is connected to all the vertices in
µn that it wasn’t connected to in GM and all other vertices in [n] and their edges are identical, thus
GM ∈ Ti(GM ). Finally, let M ′ be the matrix where we undo the rotation we did at the beginning so
M ′ is simply M with one element in row i changed. By Lemma 4.21 again, GM = GM ′ which implies
GM ′ ∈ Ti(GM ).

Notation 4.40. For a graph G, for S ⊆ V (G), the induced subgraph G[S] is the graph whose vertex
set is S and whose edge set are those edges in G where both endpoints are in S ie. V (G[S]) = S and
(i, j) ∈ E(G[S]) ⇔ (i, j) ∈ E(G) and i, j ∈ S. Furthermore, if G is bipartite with vertices V (G) = (A,B),
then for SA ⊆ A and SB ⊆ B, the induced subgraph is denoted G[(SA, SB)].

Corollary 4.41. For A ⊆ [n], if M̃ is the matrix where we swap two different adjacent elements in
row i of M , then GM̃ [(A,µn\{1})] ∈ Ti(GM [(A,µn\{1})]).

Proof. By Lemma 4.21, we can move the two adjacent elements to be the first two row entries so that
they are the constant and linear term in gi(xi), leaving GM unchanged. By Lemma 4.38, when we swap
them, all the previous roots of gi(xi) are no longer roots except for xi = 1. Thus, the corresponding
graph of the new matrix lies in Ti(GM [(A,µn\{1})]). Finally, we use Lemma 4.21 to move the elements
back to their starting positions implying GM̃ [(A,µn\{1})] ∈ Ti(GM [(A,µn\{1})]).

We are now in a position to prove Theorem 4.34, which will follow the same process we used for the
char(F)|n, Theorem 4.20. We arrange our n2 elements in a matrix M and perform a series of swaps
of elements, thus reducing the cluster density of the corresponding bipartite graph GM , until we can
guarantee the matrix can be unlocked by row rotation using our exact condition on when matrices
can be unlocked, Theorem 4.17. Applying the relevant row rotations, the matrix made out of the n2

elements is now invertible.
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Proof of Theorem 4.34. To start, since we have at most n2 − n+ 1 of the same element, we can always
arrange the n2 elements in the matrix M such that at most 1 row contains n copies of the same element
and no row contains all zeroes. The condition that at most 1 row contains n copies of the same non-zero
element implies that there is at most 1 vertex in [n] which has only 1 edge and that edge is connected
to 1 ∈ µn. This is because the polynomial with all entries the same and non-zero is equal to a multiple
of xn−1 + xn−2 + ...+ x+ 1 = xn−1

x−1 and thus has roots µn\{1}. The condition that no row contains all
zeroes implies that every vertex in [n] has at least 1 edge connected to it, since everything, including
µn, is a root of the zero polynomial.

We need to resolve a few technicalities before we perform the majority of the switches. In particular,
we need 1 ∈ µn to be connected to at least 1 vertex in [n] but still keep the condition that there is
at most 1 vertex in [n] which has only 1 edge and that edge is connected to 1 ∈ µn. If 1 ∈ µn has
no edges, we will swap two elements of M to rectify this. Since at most 1 row contains all the same
elements, we can always find two different elements α and β in two different rows i and j respectively
to swap, leaving us with a new matrix M̂ . By Lemma 4.39, since (i, 1), (j, 1) are not edges of GM ,
then (i, 1), (j, 1) are edges in all the graphs in Ti(Tj(GM )) and GM̂ ∈ Ti(Tj(GM )). There is now the
unwanted case that in GM̂ , i, j ∈ [n] are both now only connected to 1 ∈ µn. If this happens, we know
that rows i and j of M̂ are both filled with n copies of β and α respectively. So swap α and β back so
our matrix returns to M and now swap an extra β and α between rows i and j giving us a new matrix
M with GM ∈ Ti(Tj(GM )). This time, however, since n ≥ 3, rows i, j ∈ [n] in M both contain at least
two distinct elements and thus in GM , i, j ∈ [n] are connected to 1 ∈ µn as well as another vertex in
µn. We reset our notation so M is the matrix with the necessary switches such that GM has our desired
properties.

Since GM satisfies these properties, if there is a vertex in [n] which is only connected to 1 ∈ µn,
denote it v, otherwise let v be any vertex connected to 1 ∈ µn. We now define the graph G′

M :=

GM [([n]\{v}, µn\{1})]. The reason we performed all these tedious switches is so we can guarantee that
every vertex in [n]\{v} ⊂ V (G′

M ) has at least one edge, implying none of the rows are made up of only
one distinct element.

If there is a cluster in G′
M , there is a minimal cluster in G′

M from which we pick a vertex i. We
know that none of the rows of M are made up of only one distinct element, including row i, so
by Corollary 4.41, we can swap two distinct adjacent elements, giving us a new matrix M̃ where
G′

M̃
:= GM̃ [([n]\{v}, µn\{1})] ∈ Ti(G

′
M ). Also, by Lemma 4.36, cd(G′

M̃
; [n]\{v}) < cd(G′

M ; [n]\{v}).
Repeating the above process, resetting our notation back to M every time, we slowly untangle clusters
in the graph G′

M thus reducing cd(G′
M ; [n]\{v}) until cd(G′

M ; [n]\{v}) = 0 and thus by Remark 4.33,
we have a perfect matching on G′

M . At this point, we will see that we now have a perfect matching
on GM , since (v, 1) ∈ E(GM ). Now, by Theorem 4.17, since char(F) ∤ n, M can be unlocked by row
rotations and after applying these rotations, our n2 elements make up an invertible matrix.

Remark 4.42. It is very easy to apply the proof of the above Theorem, Theorem 4.34, to the n = 2

case since we only use the condition that n ≥ 3 once. If we rewrite the third paragraph of the proof
in the n = 2 case, it is easy to see that the only case we need to reconsider is when we have matrix

M =

(
a −a

−a a

)
for any a ∈ F and thus E(GM ) = {(1,−1), (2,−1)}. In this case, when we swap two

different elements, we get M̂ =

(
a −a

a −a

)
. Now E(GM̂ ) = {(1, 1), (2, 1)} so GM̂ now has two vertices

connected to 1 ∈ µ2 and by the proof, we should switch a and −a back. However, when we switch the
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other a and −a, we’re back to the matrix M and thus caught in an infinite loop. In fact, it is no wonder
the proof doesn’t work for this matrix, since we can never construct an invertible matrix if we’re given
the elements {a, a,−a,−a}! So, by considering this case separately, we can actually give the following
statement.

For n ∈ N, given n2 elements in a field F, then, unless there are more than n2 − n+ 1 of the same
element, more than n2 − n zeroes or the elements are {a, a,−a,−a} for some a ∈ F, we can always
construct an invertible n× n matrix out of those elements.

GM

µ2

[2]

1

1 2

−1

GM̂

1

1 2

−1

Figure 4.2: The bipartite graphs GM and GM̂ corresponding to M and M̂ respectively from Remark
4.42.

Corollary 4.43. For n ∈ N, given n2 elements in a field F, we can always construct an invertible n×n

matrix out of those elements if and only if there are at most n2 − n+ 1 of the same element, at most
n2 − n zeroes and the elements are not {a, a,−a,−a} for some a ∈ F.

Proof. Then n = 1 case is trivial. For n ≥ 2, the ⇐ follows from Theorem 4.34, Theorem 4.20 and
Remark 4.42. For the ⇒ direction, if there are more than n2 − n + 1 of the same element, by the
pigeonhole principle, there are always going to be two rows filled with only one distinct element no
matter how we rearrange the matrix. Thus, since those two rows are not linearly independent, the
determinant of the matrix will always vanish. Similarly, if there are more than n2 − n zeroes, again by
the pigeonhole principle, there will be at least one row made up of just zeroes and thus the determinant

will always be zero. Finally, for a ∈ F, the determinants of

(
a a

−a −a

)
,

(
a −a

−a a

)
and

(
a −a

a −a

)
are

all zero so if the elements are {a, a,−a,−a}, we cannot rearrange the elements such that the matrix is
invertible.

Remark 4.44. Although we are talking about being able to construct invertible n× n matrices from n2

elements in Theorem 4.20, Theorem 4.34 and Corollary 4.43, this is equivalent to saying matrices made
up of those n2 elements can be unlocked by all permutations.

Remark 4.45. Given n2 elements in a field F which can be arranged into an invertible n× n matrix
as in Corollary 4.43, the proofs of Theorem 4.34 and Theorem 4.20 in fact both give algorithms to find
an invertible n× n matrix constructed from those elements when combined with Remark 4.8.

Remark 4.46. It is also nice to notice that Corollary 4.43 is a generalisation of Theorem 3.34 which
we proved simply by using the Combinatorial Nullstellensatz.
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4.3 ...by rotations of its rows and columns?

We now consider rotations of both rows and columns of our matrix. Letting ei denote the standard
ith basis vector as before, let ci(M) := (ri(M

T ))T ie. a rotation of the ith column by 1 element. Then
ci ∈ Sn2 and for C := {ci : i ∈ [n]} ⊆ Sn2 , then ⟨R,C⟩ ⊆ Sn2 is the set of all row and column rotations.
We say M is unlocked by row and column rotations if ∃σ ∈ ⟨R,C⟩ such that det(σ(M)) ̸= 0.

Example 4.47. Let’s consider the matrix γ =

 2 −7 5

−3 −8 11

2 0 −2

 ∈ M3(C) again. From Example 4.3 we

know we won’t get a non-zero determinant by rotating the rows, however, by rotating the first column, we

get c1(γ) =

−3 −7 5

2 −8 11

2 0 −2

 which det(c1(γ)) = −150. Now consider ν =

−8 1 7

6 4 9

2 −5 3

 ∈ M3(F19).

It is easy to see that ν is not unlocked by just rows or just columns ie. det(σ(ν)) = 0 for all σ ∈ ⟨R⟩∪⟨C⟩
since both the rows and columns add up to 0. However, if we rotate the first column down by one we

have c21(ν) =

 2 1 7

−8 4 9

6 −5 3

 and then if we rotate the top row by one we get r21c
2
1(ν) =

 7 2 1

−8 4 9

6 −5 3


which has determinant 1 ̸= 0.

We present a final original theorem, building on our work to which matrices are unlocked by all
permutations.

Theorem 4.48. For n ≥ 3, given a matrix M ∈ Mn(F), then M is unlocked by row and column
rotations if and only if there are at most n2 − n+ 1 of the same element or at most n2 − n zeroes.

As we can see, by comparing with Theorem 4.34, allowing rotations of both row and columns allows
us as much freedom as rearranging the elements in any way we like. To see why, we need to briefly
revisit some group theory of the symmetric groups Sn.

Lemma 4.49. By rotating the rows and columns of a matrix M ∈ Mn(F), we can cyclically permute
any n elements of the matrix in any order leaving all other entries unchanged.

Proof. Choose n elements in the matrix that we want to cyclically permute. We now want to manoeuvre
all of these elements into the first row in the specified order just by using rotations of rows and columns.
In the specified order that we want our elements to be cyclically permuted, we move one element at a
time, making sure not to alter any of the elements already correctly placed in the first row. Say we
have an element currently at (i, j) which we want to move to position (1, k). If i = 1, then rotate the
jth column by one position and let the element be at (i, j) where i ̸= 1. Now rotate the ith row until
the element is in column k and rotate the kth column until the element is in (1, k). In this process, we
do not alter the position of any element already placed correctly in the first row. By repeating this for
all n elements we want to cyclically permute, we have a sequence of rotations which get us from our
starting matrix M to the matrix with the elements we want to cyclically permute in the first row in the
specified order. Now, we rotate the top row to cyclically permute the elements as specified and then
perform the inverse of each rotation in our sequence in reverse order to get back to the starting matrix
M now with those n elements cyclically permuted. Clearly this was done only using rotation of rows
and columns since the inverse of a rotation is again a rotation.
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We will now need a standard result from group theory which we will not prove here, however, a
proof can be found in Cook’s lecture notes, [Coo10].

Lemma 4.50. For n ≥ 5, the only normal subgroups of Sn are {e}, An and Sn.

We now prove another group theory result utilising Lemma 4.50.

Lemma 4.51. For n ≥ 3,

n-cycles in Sn2 generate

An2 if n is odd,

Sn2 if n is even.

Proof. Since conjugacy classes in Sn2 are given by elements with the same cycle shape, the set of
n−cycles form a full conjugacy class. Letting the subgroup generated by the n−cycles be denoted N ,
then N is normal in Sn2 . To see this, notice that for all g ∈ Sn2 ,

g−1Ng = g−1
{∏

a : a is an n−cycle
}
g =

{∏
g−1ag : a is an n−cycle

}
⊆ N

since the n−cycles form a conjugacy class and thus g−1ag is again an n−cycle for any g ∈ Sn2 .
Now we use Lemma 4.50 and notice that for n odd, an n−cycle is an even permutation ie. has

sgn(σ) = 1, and since sgn is multiplicative, N will only contain elements σ ∈ Sn2 with sgn(σ) = 1 ie.
even permutations. Thus, for n odd, N ≠ Sn2 as Sn2 contains odd permutations and N is clearly not
the trivial subgroup then N = An2 . Similarly, for n even, N ̸⊆ An2 since, for n even, an n−cycle is an
odd permutation thus N = Sn2 .

We will now prove Theorem 4.48 by using the fact that the n-cycles generate either An2 or Sn2 and
then using Corollary 4.43.

Proof of Theorem 4.48. By Lemma 4.49, if we think of Sn2 acting on each of the elements in M , then
the n−cycles given by rotations of the rows and columns generate all n−cycles in Sn2 . Now, combining
this with Lemma 4.51, we have that for n even, we can apply any permutation to the elements of
M just by rotating the rows and columns and for n odd, we can apply any even permutation to the
elements of M just by rotating the rows and columns.

Now, the result follows for n even using Corollary 4.43, and we only have to work slightly harder for
n odd. In this case, if we recall that, in the process of proving both Theorem 4.34 and Theorem 4.20,
we proved that by swapping elements, we could rearrange M into a matrix with non-zero determinant.
If this permutation is even, we are done since this permutation can be realised by rotating rows and
columns. If this permutation is odd, we choose two rows and swap all pairs of elements in the same
column between the rows. Since n is odd we are adding an odd number of transpositions to the odd
permutation thus leaving us with an even permutation. Swapping two rows of a matrix multiplies the
determinant by −1, thus, it stays non-zero, and since we applied an even permutation to get matrix
into this form, we could also have got to this point by rotating rows and columns.

Corollary 4.52. For n ∈ N, given a matrix M ∈ Mn(F), then M is unlocked by row and column
rotations if and only if there are at most n2 − n+ 1 of the same element, at most n2 − n zeroes and the
elements are not {a, a,−a,−a} for some a ∈ F.

Proof. Again, the n = 1 case is trivial and n ≥ 3 is given by Theorem 4.48. Extending to the case n = 2,
the normal subgroups of S4 are given by {e}, V4, A4, S4 where V4 ⊆ A4 so since a 2−cycle is an odd
permutation and using the fact that the rotations of rows and columns generates a normal subgroup,
then any permutation of the elements of a 2× 2 matrix can be generated by rotations of the rows and
columns. The result now follows using Corollary 4.43.
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4.4 Polynomials that Vanish on Distinct Roots of Unity

The polynomial ideal J (n), defined in Definition 4.53, is the subject of Kézdy and Snevily’s paper
titled Polynomials that Vanish on Distinct Roots of Unity, [KS04], where amongst other things, they
give a Gröbner basis for the ideal and use Gröbner basis methods to give a characterisation of the ideal
based on the Combinatorial Nullstellensatz. In Section 4, titled ’Further Examples’, they even state the
connection between bipartite graphs and determinants of rotations of matrices (albeit in different terms
which we show are equivalent below). Since Kézdy was Brauch’s PhD advisor, it is likely [KS04] was
the inspiration for the paper [BKS14], which itself was the inspiration for this Chapter.

Definition 4.53. Let J (n) be an ideal in C[x1, ..., xn], where g ∈ J (n) ⇔ g(x) = 0 for all x ∈ µn
n with

distinct components ie. xi ̸= xj for i ̸= j.

Remark 4.54. It is easy to see that for g ∈ C[x1, ..., xn], let f(x) := g(x)(detVn)(x), then, g ∈ J (n)

⇔ µn
n ⊆ Z(f) ie. f(x) = 0 for all x ∈ µn

n. Combining the above with Lemma 4.14 we get g ∈ J (n)

⇔ (detVn)g ∈ ⟨xni − 1 : i ∈ [n]⟩. This is given as a Remark on p.54 of [KS04] and should make the
definition of fM (x) in Definition 4.4 slightly less arbitrary.

The main result of [KS04], given in Theorem 4.56, gives an exact condition on the coefficients of
polynomials in J (n). Note that the notation in the following definition and Theorem has been slightly
altered from the original in [KS04].

Definition 4.55. To each α ∈ Nn
0 , associate a function πα : [n] → [n], i 7→ αi +1 (mod n). Then define

the following set of n-tuples,
Λ := {α ∈ Nn

0 : πα ∈ Sn}.

Theorem 4.56. For f ∈ C[x1, ..., xn] where f(x) =
∑

α∈Nn
0
cαx

α, then f /∈ J (n) if and only if there
exists some β ∈ Nn

0 satisfying βi ≤ n− i for all i ∈ [n] such that∑
α+β∈Λ

cα sgn(πα+β) ̸= 0

The proof of Theorem 4.56 given in [KS04] is very long and we will not prove it here. However, while
Theorem 4.56 has a fairly complicated condition on the membership of f ∈ J (n), when f is separable
with coefficients that can be displayed in an n × n matrix, it reduces to a much more manageable
condition and one which we have seen before.

Corollary 4.57. For g ∈ C[x1, ..., xn] separable, assume g(x) =
∑

α∈Nn
0
cαx

α =
∏

i∈[n] gi(xi) where
gi ∈ C[xi] and deg(gi) ≤ n − 1 for all i ∈ [n]. Furthermore, we can define a matrix M ∈ Mn(C), by
letting gi(xi) =

∑
j∈[n]Mi jx

j−1
i for j ∈ [n]. Then g /∈ J (n) if and only if M can be unlocked by row

rotations.

The key realisation here is that, by definition of M , for α ∈ {0, ..., n−1}n, then cα =
∏

i∈[n]Mi (αi+1)

otherwise cα = 0. Thus, using the substitution σ = πα+β implying σ(i) = αi + βi + 1, then

∑
α+β∈Λ

cα sgn(πα+β) =
∑

α∈{0,...,n−1}n
πα+β∈Sn

sgn(πα+β)

n∏
i=1

Mi (αi+1) =
∑
σ∈Sn

sgn(σ)

n∏
i=1

Mi (σ(i)−βi)

=
∑
σ∈Sn

sgn(σ)

n∏
i=1

M [−β]i σ(i) = det(M [−β]).
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Combining Corollary 4.57 with Remark 4.54 and Definition 4.4, we have proved Corollary 4.7 again,
but only for the special case F = C! In some sense then, taking β = 0, we can view

∑
α∈Λ cα sgn(πα)

as the generalisation of the determinant of a matrix to the ’determinant’ of a polynomial. Then, the
existence of a β ∈ Nn

0 such that
∑

α+β∈Λ cα sgn(πα+β) ̸= 0 would generalise the notion of a matrix
being able to be unlocked by row rotations.

[KS04] applies Theorem 4.56 to give equivalent statements for the existence of a number of
mathematical objects, including permutation polynomials, Latin transversals and Hamiltonian cycles in
graphs as well as bipartite graphs. However, we will not cover these applications here.

4.5 Further Directions for Research

We conclude this chapter by discussing 3 further directions that research could be taken in, based off of
the original material in this report.

• In Chapter 4, we gave exact conditions on when matrices could be unlocked by ⟨R⟩ (row rotations),
⟨R,C⟩ (row and column rotations) and Sn2 (all permutations) where we circumvented the proof
for row and column rotations by proving that ⟨R,C⟩ was equal to either An2 or Sn2 depending
on the parity of n and then appropriating our proof for all permutations. An obvious route for
further research would be to give conditions on when matrices can be unlocked by other subsets
of Sn2 . We assume that taking subsets such as ⟨R⟩ with nice properties will give nicer results.

• In [BKS14], for matrices M , constructed directly from bipartite graphs, a formula is given for
the number of row rotations that unlock the matrix, given by supp(f̂M ) where f̂M is the discrete
Fourier transform of fM . An investigation into whether a similar formula could be given for any
matrix M would likely be successful. However, trying to find formulae for the number of elements
of other subsets of Sn2 that the matrix is unlocked by seems fruitless based on the slightly arduous
proof of even one of these elements existing.

• It is interesting to note that, denoting Kn the complete graph on n nodes and Vn the Vandermonde
matrix, detVn = fKn where fG is the graph polynomial for graph G, from Definition 3.38. Thus, for
a graph G = ([n], E(G)), we could define the ideal JG(n) where g ∈ J (n)⇔ fGg ∈ ⟨xni −1 : i ∈ [n]⟩.
Then, by Remark 4.54, JKn(n) = J (n). JG(n) would then have the property that g ∈ J (n) ⇔
g(x) = 0 for all x ∈ µn

n where xi ̸= xj if (i, j) ∈ E(G).
Taking this idea a step further, for a hypergraph H = ([n], E(H)), using the definition of a
hypergraph polynomial gH from Definition 3.41, we could define ideals JH(n) where h ∈ J (n) ⇔
gHh ∈ ⟨xni − 1 : i ∈ [n]⟩ ⇔ h(x) = 0 for all x ∈ µn

n where |{xi : i ∈ e}| ≠ 1, ∀ e ∈ E(H).
Gröbner bases for these ideals could likely be found by hand and could certainly be computed.
Perhaps even exact conditions on membership of these ideals such as in Theorem 4.56 could be
constructed. One application, similar to those of [KS04], that could be established is the following.
Let G = (V,E) be the bipartite graph where V = ([n], µn), and ω is a primitive nth root of
unity. Then define a polynomial g ∈ C[x1, ..., xn] where

∏
(i,ωj) ̸∈E(G)(xi − ωj). By Remark 4.54

and Lemma 4.16, we have that G has a perfect matching ⇔ g ̸∈ J (n). Now let H(n,3) denote the
hypergraph on n nodes where E(H(n,3)) contains every possible hyperedge of size 3 and no others.
Then G contains a matching where we allow at most two nodes in [n] to connect to the same
node in µn ⇔ g ̸∈ JH(n,3)

(n).
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Conclusion

In the first half of this report, we covered some of the main results that the polynomial method has to
offer in the area of extremal combinatorics, including the Finite Field Kakeya Conjecture, one case of
the Erdős-Szemerédi sunflower conjecture, the cap set bound, the Cauchy-Davenport inequality and the
Erdős-Heilbronn conjecture. However, upon seeing these results pop out after defining just a single key
polynomial (or 3-tensor), it is often easy to overlook the strength of the results being proved. To this
end, studying alternate proofs of results, where these exist, such as in the case of the bound on the size
of s-distance sets or the Cauchy-Davenport inequality, gives us a sense of just how intractable these
problems seem before we apply a polynomial method and the answer falls out.

In this way, we can see the polynomial method as a double-edged sword; it can provide almost
instantaneous results for some hard problems, however, it is difficult to ever guarantee that the
polynomial method will work on a given problem. For example, in the concluding remarks of Alon’s
groundbreaking paper, [Alo99], he raises the possibility that the polynomial method may be the key
in the study of the Four Colour Theorem. With the recent non-constructive proof of the Four Colour
Theorem by Jackson and Richmond in [JR23], perhaps Alon’s proposal might not be as far away from
reality as we thought. However, until the right polynomial method is unearthed, it is hard to know.

On the other hand, in Tao’s comment from 2010 on mathoverflow.net, [Tao10], he rightly predicts
that the polynomial method may be useful in resolving the cap set problem, a task which Ellenberg and
Gijswijt were able to accomplish in 2016 in [EG16]. In the preface to [Tao14], Tao conjectures that there
might be opportunities to use deeper results from algebraic geometry and algebraic topology alongside
polynomial methods and, based on Tao’s expert intuition in the subject, this seems likely. However, we
can only hope for an approach for deciding if a given problem is susceptible to the polynomial method.

In the latter half of the report, we proved a number of original existence statements using the
Combinatorial Nullstellensatz, and demonstrated how we can wrap up information about the sets on
which polynomials vanish into statements about polynomial ideals. We then applied these ideas in
Chapter 4, inspired by a result from [BKS14], to questions about determinants of matrices. To prove our
main result, the exact conditions on when a matrix can be unlocked by all permutations, we required the
new notions of clusters, minimal clusters and cluster density, as well as a number of technical lemmas
and fair amount of setup in the final proof. It is not unimaginable that there is a polynomial method
from which this result falls out. However, the single counter example given by the set {a, a,−a,−a}
not included in the other conditions for a matrix not to be unlockable seems to imply that there will
always be some degree of complexity and setup required for the proof, to allow for this case.

Finally, to put our methods in context, we briefly covered Kézdy and Snevily’s paper [KS04] and
discussed taking combinatorial problems and providing equivalent statements in terms of polynomial
ideals. This notion is generalised in [De +11], where they define a problem as feasible if it has an
equivalent statement in terms of zeroes of polynomials, although their main focus is computational
rather than theoretical.
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Appendix A

Perfect Matchings and Disjoint Cycle
Covers

In this section, we state and prove Theorem 1.19, now given as Theorem A.2, which gives a condition
on when a graph has a perfect matching. We then introduce the closely-related notion of a directed
graph having a disjoint cycle cover and prove an analogue of Theorem A.2 in this case by introducing
the Edmonds matrix.

Before we discuss Theorem A.2, we state the Leibniz formula which will be needed in the proof.

Lemma A.1 (Leibniz determinant formula). Given an n× n matrix A with entries Ai j, we have

det(A) =
∑
σ∈Sn

sgn(σ)
n∏

i=1

Ai σ(i)

where Sn is the set of permutations of [n] and for σ ∈ Sn, sgn(σ) = (−1)Nσ , where Nσ is the number of
transpositions in the decomposition of σ.

We now restate the Theorem by Tutte from [Tut47] and provide an example before giving a proof
from Williams’ lecture notes, [Wil21].

Theorem A.2 (Theorem 1.19). A graph G contains a perfect matching if and only if the Tutte matrix
of G has non-zero determinant.

v1

v2 v3

v4
A =


0 x12 0 x14

−x12 0 x23 0

0 −x23 0 x34

−x14 0 −x34 0


Figure A.1: The graph S and the corresponding Tutte matrix A as in Example A.3.

Example A.3. Let S be the graph with vertices V (S) = {v1, v2, v3, v4} on the perimeter of a square
and edges between adjacent vertices as shown, along with the corresponding Tutte matrix A, in Figure
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A.1. We have det(A) = x212x
2
34 + x214x

2
23 + 2x12x23x34x14 which is clearly not the zero polynomial and

indeed there are two perfect matchings on S given by {(v1, v2), (v3, v4)} and {(v1, v4), (v2, v3)}.
It is interesting to note that rewriting this determinant as det(A) = x12x21x34x43 + x14x41x23x32 −

2x12x23x34x41 gives combinations of groupings of paths of even length starting and ending at the same
vertex. It becomes clear in the proof of Theorem 1.19 that this is true in general for the determinant of
any Tutte matrix as the non-zero terms in the Leibniz determinant formula come from permutations
with only even cycles.

Proof. For the ⇒ statement of the theorem, it suffices to show det(A) is not the zero polynomial. So,
given a perfect matching of a graph G, plug in xij = 1 if vi and vj are matched in the perfect matching
and xij = 0 otherwise. Then, there will be only one non-zero entry in every row and column of A, since
every vertex connects to exactly one edge. Thus det(A) is non-zero.

For ⇐, we let P be the set of permutations in Sn containing at least one odd cycle. Then we can
construct a map ϕ : P → P where, for σ ∈ P written in terms of disjoint cycles, ϕ reverses the odd
cycle in σ which contains the minimum element of any odd cycle ie. for σ = τσ′ where τ is the odd
cycle containing the minimum element of any odd cycle, ϕ(σ) = τ−1σ′. Clearly ϕ2 = IdP , so ϕ is a
bijection. Now, we consider the terms in the Leibniz determinant formula, Lemma A.1, corresponding
to σ and ϕ(σ) for some σ ∈ P , letting σ = τσ′ as before.

sgn(σ)

n∏
i=1

Ai σ(i) + sgn(ϕ(σ))

n∏
i=1

Ai ϕ(σ(i)) = sgn(σ)

n∏
i=1

Ai τσ′(i) + sgn(σ)

n∏
i=1

Ai τ−1σ′(i)

= sgn(σ)
∏
i∈σ′

Ai σ′(i)

(∏
i∈τ

Ai τ(i) +
∏
i∈τ

Ai τ−1(i)

)
= sgn(σ)

∏
i∈σ′

Ai σ′(i)

(∏
i∈τ

Ai τ(i) +
∏
i∈τ

Aτ(i) i

)

= sgn(σ)
∏
i∈σ′

Ai σ′(i)

(∏
i∈τ

Ai τ(i) + (−1)|τ |
∏
i∈τ

Ai τ(i)

)
= 0

using the fact that |τ | is odd, sgn(σ) = sgn(ϕ(σ)) and A is skew-symmetric so Aij = −Aji. In doing
so, we have shown that every permutation σ ∈ Sn containing an odd cycle will cancel out with the
corresponding σ′ in the determinant formula. Now we use the fact that det(A) is non-zero which implies
that there exists at least one σ ∈ Sn with only even cycles such that the coefficient of

∏2n
i=1Ai σ(i)

is non-zero in det(A). Writing this σ as a product of disjoint even cycles, we can match consecutive
elements from the same cycle in pairs ie. (vi, vσ(i)), giving a perfect matching of the graph G. This is
indeed a perfect matching as, if any pairs of vertices (vi, vσ(i)) didn’t share an edge in our matching,
then xiσ(i) = 0 and thus the coefficient of

∏n
i=1Ai σ(i) is zero in det(A) which is a contradiction.

We will now extend the notion of a perfect matching to a disjoint cycle cover as well as generalising
the notion of a graph to a directed graph.

Definition A.4. A directed graph G = (V (G), E(G)) is a set of vertices where edges between vertices
are ordered pairs ie. for vertices v, w ∈ V (G), (v, w) may be an edge but (w, v) may not be. We draw
directed graphs with arrows going from the first vertex in the ordered pair to the second.

A cyclic sub-graph of a directed graph is a subset of the vertices that can be written in a permutation
σ such that (v, σ(v)) ∈ V (G).

Example A.5. Graph C does not have a cyclic sub-graph, whereas graph D has 4 cyclic sub-graphs
with vertices {1, 2, 3}, {1, 3, 4}, {1, 2, 3, 4} and {1, 3}. Both graphs are visualised in Figure A.2.
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C

1

2 3

4

D

1

2 3

4

Figure A.2: We visualise graphs C and D from Example A.5.

Definition A.6. A disjoint cycle cover of a directed graph G is a set of cyclic sub-graphs of G which
cover all vertices of G whilst having no vertices in common.

From [MR95], we introduce the notion of the Edmonds matrix.

Definition A.7. Given a directed graph G with vertices V (G) = {vi}i∈{1,...,n}, we define a very similar
matrix to the Tutte matrix called the Edmonds matrix, Â ∈ Mn(Z[xij ]) for i, j ∈ [n] given by:

Ĝi j =

xij if (vi, vj) ∈ E(G),

0 otherwise.

Example A.8. Let H be the the graph shown in Figure A.3, then H has two disjoint cycle covers. The
determinant of the corresponding Edmonds matrix is det(Ĝ) = x12x23x34x45x51 − x15x52x21x34x43 −
x15x51x23x34x42 − x12x25x51x34x43. Whereas the determinant of the Tutte polynomial had terms with
non-zero coefficients that didn’t correspond to perfect matchings, we now see that terms in the determinant
of our new matrix Â with non-zero coefficients mark out precisely the disjoint cycle covers.

2

1 5

4

3


0 x12 0 x14 x15

x21 0 x23 0 x25

0 0 0 x34 0

0 x42 x43 0 x45

x51 x52 0 0 0


Figure A.3: We visualise a graph H and its corresponding Edmonds matrix. The two components of a
disjoint cycle cover of H are highlighted in red and blue.

Definition A.9. For a directed graph G, define the corresponding bipartite graph BG where we define
BG to have vertices V (BG) = (V (G), V (G)) and edges (v, w) ∈ E(BG) ⇔ (v, w) ∈ E(G) for all vertices
v, w ∈ V (G)

Lemma A.10. There is a bijection between directed graphs and bipartite graphs. In addition, for a
directed graph G and corresponding bipartite graph BG, G has a disjoint cycle cover ⇔ BG has a perfect
matching.
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Proof. The bijection can be given by G ↔ BG for G a directed graph and BG defined in Definition
A.9. Furthermore, G having a disjoint cycle cover is equivalent to having a permutation σ of the
elements of G such that (v, σ(v)) ∈ E(G) for all vertices v ∈ V (G). By the definition of BG and the
fact σ is a permutation, this is equivalent to having a perfect matching on BH made up of edges
(v, σ(v)) ∈ E(BG).

1 2 3 4 5

1 2 3 4 5

Figure A.4: We construct the corresponding bipartite graph BH for graph H from Example A.8.
Corresponding components to those of the disjoint cycle cover depicted in Figure A.3 are coloured.

Now we can give the analogue to Theorem A.2, this time on when directed graphs have disjoint
cycle covers.

Theorem A.11. A directed graph G has a disjoint cycle cover ⇔ det(Ĝ) ̸= 0.

Proof. Given the corresponding bipartite graph BG of G, we can write the Tutte matrix of BG as

A =

(
0n Ĝ

−ĜT 0n

)
where 0n is the n × n matrix of zeroes. Now using properties of determinants,

det(A) = (det(Ĝ))2, thus by Theorem 1.19, det(Ĝ) ̸= 0 ⇔ BG has a perfect matching. Finally, using
Lemma A.10, the result follows.

Definition A.12. For matrix M ∈ Mn(F), the permanent of M is defined as

perm(M) =
∑
σ∈Sn

n∏
i=1

Mi σ(i)

It is worth remarking that that the permanent of the matrix is just the determinant without the
multiplication by sgn(σ) of each term.

Remark A.13. Given a directed graph G, perm(G) evaluated at 1 on all variables xij for i, j ∈ [n]

gives the number of disjoint cycle covers of G.

This result is used in [BH93] to prove the fact that computing the permanent of a matrix is
#P-complete.
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